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Preface

A knowledge of linear systems provides a firm foundation for the study of
optimal control theory and many areas of system theory and signal processing.
State-space techniques developed since the early sixties have been proved to be
very effective. The main objective of this book is to present a brief and
somewhat complete investigation on the theory of linear systems, with
emphasis on these techniques, in both continuous-time and discrete-time
settings, and to demonstrate an application to the study of elementary (linear
and nonlinear) optimal control theory.

An essential feature of the state-space approach is that both time-varying
and time-invariant systems are treated systematically. When time-varying
systems are considered, another important subject that depends very much on
the state-space formulation is perhaps real-time filtering, prediction, and
smoothing via the Kalman filter. This subject is treated in our monograph
entitled “Kalman Filtering with Real-Time Applications” published in this
Springer Series in Information Sciences (Volume 17). For time-invariant
systems, the recent frequency domain approaches using the techniques of
Adamjan, Arov, and Krein (also known as AAK), balanced realization, and
H® theory via Nevanlinna-Pick interpolation seem very promising, and this
will be studied in our forthcoming monograph entitled “Mathematical Ap-
proach to Signal Processing and System Theory”. The present elementary
treatise on linear system theory should provide enough engineering and mathe-
matics background and motivation for study of these two subjects.

Although the style of writing in this book is intended to be informal, the
mathematical argument throughout is rigorous. In addition, this book is self-
contained, elementary, and easily readable by anyone, student or professional,
with a minimal knowledge of linear algebra and ordinary differential equa-
tions. Most of the fundamental topics in linear systems and optimal control
theory are treated carefully, first in continuous-time and then in discrete-time
settings. Other related topics are briefly discussed in the chapter entitled
“Notes and References”. Each of the six chapters on linear systems and the
three chapters on optimal control contains a variety of exercises for the
purpose of illustrating certain related view-points, improving the understand-
ing of the material, or filling in the details of some proofs in the text. For this
reason, the reader is encouraged to work on these problems and refer to the
“answers and hints” which are included at the end of the text if any difficulty
should arise.



VI Preface

This book is designed to serve two purposes: it is written not only for self-
study but also for use in a one-quarter or one-semester introductory course in
linear systems and control theory for upper-division undergraduate or first-
year graduate engineering and mathematics students. Some of the chapters
may be covered in one week and others in at most two weeks. For a fifteen-
week semester, the instructor may also wish to spend a couple of weeks on the
topics discussed in the “Notes and References” section, using the cited articles
as supplementary material.

The authors are indebted to Susan Trussell for typing the manuscript and
are very grateful to their families for their patience and understanding.

College Station Charles K. Chui
Texas, May 1988 Guanrong Chen
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1. State-Space Descriptions

Although the history of linear system theory can be traced back to the last
century, the so-called state-space approach was not available till the early 1960s.
An important feature of this approach over the traditional frequency domain
considerations is that both time-varying and time-invariant linear or nonlinear
systems can be treated systematically. The purpose of this chapter is to introduce
the state-space concept.

1.1 Introduction

A typical model that applied mathematicians and system engineers consider is a
“machine” with an “input-output” relation placed at the two terminals (Fig. 1.1).
This machine is also called a system which may represent certain biological,
economical, or physical systems, or a mathematical description in terms of an
algorithm, a system of integral or differential equations, etc. In many appli-
cations, a system is described by the totality of input-output relations (u, v) where
u and v are functions or, when discretized, sequences, and may be either scalar or
vector-valued. It should be emphasized that the collection of all input-output
ordered pairs is not necessarily single-valued. As a simple example, consider a
system given by the differential equation v’ + v =u. In this situation, the totality
of all input-output relations that determines the system is the set

S={(u,v):v"+v=u}

and it is clear that the same input u gives rise to infinitely many outputs v. For
example, (1, sinz+ 1), (1, cost+ 1), and even (1, acost +bsinz + 1) for arbitrary
constants a and b, all belong to S. To avoid such an unpleasant situation and to
give a more descriptive representation of the system, the “state” of the system is
considered. The state of a system explains its past, present, and future situations.
This is done by introducing a minimum number of variables which are called
state variables that represent the present situation, using the past information,
namely the initial state, and describe the future behavior of the system
completely. The column vector of the state variables, in a given order, is called a
state vector.
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Y System A ——
(input) y (output)

Fig. 1.1

Let us return to the simple example of the system described by the differential
equation v+ v=u with a specified initial state. Introducing the state vector

Xy
x= ,
X2

where x, and x, are state variables satisfying the initial state x,(a)=b and
x,(a)=c, we can give a “state-space” description of this system by using a system
of'two equations:

SEB2H,

v=[1 0]x ,

(1.1)

where X denotes the derivative of the state vector x. The definition of state-space
will be better understood later in Sect. 1.4. Here, the first equation in (1.1) gives
the input-state relation while the second equation describes the state-output
relation. The so-called state-space equations (1.1) could be obtained by setting the
state variables x; and x, to be v and v’ respectively. However, without the
knowledge of such substitutions, it may not be immediately clear that the input-
output relation follows from the state-space equations (1.1). To demonstrate how
this is done more generally, we rewrite (1.1) as

X=Ax+Bu
(1.2)
v=Cx

where A, B, C are 2x 2, 2x 1, 1 x 2 matrices and let p(4) be the characteristic
polynomial of A. In this example, p(1)= A2+ 1, so that by the Cayley-Hamilton
Theorem, we have

p(A)=A2+1=0 .

Hence, differentiating the second equation in (1.2) twice (the number of times of
differentiation will equal the degree of the characteristic polynomial of the square
matrix A4), and utilizing the first equation in (1.2) repeatedly, we have

Cx=v
CAx=v—CBu
CA*x=v"—CBu'—CABu .
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Therefore, the identity p(4)= A2+ 1=0 can be used to eliminate x, yielding;
(v"—CBu —CABu)+v=CA%x+Cx=C(A%2+DNx=0 or
v"+v=C(Bu'+ ABu)
=[1 0] ([3]w +[4]w)

=u .

1.2 An Example of Input-Output Relations

More generally, if the characteristic polynomial of an n x n matrix A in an input-
state equation such as (1.2) is

pA=A"+a, A" '+ ... +a,,
then the above procedure gives

Cx=v

CAx=v'—CBu

CA*x=v"—CBu'—CABu

CA"x=v"—CBu""V—CABu"?— ... —CA" 'Bu ,

so that, by setting a,=1, we have:

n n—k-1
Y ak<v‘"""’—C Y AfBu‘""“j_“>=Cp(A)x=0 .
k=0 ji=0

J
That is, the input-output relation can be given by
n

n n—k—1
Y ap"P=C Y a, Y A'Bu"Tk7i™Y 1.3)
j=0 k=0 j=0

with ag=1.
A slightly more general form of (1.3) is given by

Lv=Mu
n d"'j
sz;o 4=+ Go=1 (1.4)

m dm—k
M= Z by—=, m<n.
K=o dt
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However, the system with input-output relations described by (1.4) does not
necessarily have a state-space description given by (1.2) (Exercise 1.2). We also
remark in passing that even if it has such a description, the matrices 4, B and C
are not unique (Exercise 1.3).

1.3 An Example of State-Space Descriptions

A more general state-space description of a system with input-output pairs (u, v)
is given by
Xx=Ax+Bu
(1.5)
v=Cx+Du

where A, B, C, D are matrices with appropriate dimensions. By eliminating the
state vector x and its derivative with the help of the Cayley-Hamilton Theorem
as above, it is not difficult to see that the input-output pair (u, v) in (1.5) satisfies
the relation Lv=Mu in (1.4) with appropriate choices of constants a; and b,
(Exercise 1.4). To see the converse, that is, to show that the input-output relations
in (1.4) have a state-space description as given in (1.5), we follow the standard
technique of transforming an nth order linear differential equation to a first order
vector differential equation as was done in the simple example discussed earlier
by choosing the matrix 4 to be

0 1 0 ... 0
o 0 1 ;
: . 0
o ... 0
| —a, ... —a, —a;_]

Of course there are other choices of A. But with this “so-called” standard choice,
it is clear that the matrix C must be given by

C=[10...0].
Hence, by setting B=[f, ... ,]" and D=[f,] we see that the variables of the
vector x=[x, ... x,]T in (1.5) satisfy the equations:

’
Xy =x,+pu
xy=x3+Bu
!
xn—lzxn+ﬁn~—1u
Xptax,+ ... +a,x,=p,u

v=x;+Pou .
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That is, the state variables are defined by

xy=v—Pou
X=X —Biu=v'—(Bou'+ B, u)

X3 =x3—Bau=v"—(Bou" + B, + fu)

xn=x:|—1—Bn—1u=v("_1)_(ﬁ0u(n_1)+ coe HBu1u)
and must satisfy the constraint:
xpta x,+ ... +a,x,=p,u,

or equivalently,

n n n—1
’Zo ajv("_j)=<_z aiﬁn—i>u+< Y aiﬁn—i-l)“'
=

i=0 i=0

+ ... H(aBo +aoB)u "V tagBou™ . (1.6)
Hence, the constants f, . . ., B, are uniquely determined by the linear matrix
equation
a, a, ... a,
: . . . al . - .
: Lo b
0 ... 0 q Po "

where a,=1and b;=0{or j <0. We remark that the highest derivative of uin (1.6)
is n, and hence the order m of the differential operator M in (1.4) is not allowed to
exceed n.

1.4 State-Space Models

A system with the state-space description given by (1.5) is usually called a single-
input/single-output time-invariant system; that is, the matrices 4, B, C and D in
(1.5) are constant matrices and the input and output functions are scalar-valued.
In general, we have to work with time-varying systems, and in addition, the input
and output functions may happen to be vector-valued; in other words, we may
have a multi-input/multi-output system. The state-space description of such a
system is given by

x=A(t)x+ B(t)u

(1.7)
v=C(t)x+D(tlu .
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The digital version of (1.7) is

X1 =Aux,+ By, (1.8)
v,=Cx,+Dyuy

where {u, } and {v, } are input and output sequences of the discretized (or digital)
system, respectively. Of course (1.8) is only an approximation of (1.7), for
instance, by setting u, =u(kh), v, =v(kh), and x,=x(kh) where h is a sampling
time unit. A natural choice of the matrices 4,, B;, C, and D, is given by

Ay =hA(kh)+1

B,=B(kh)
C,=C(kh) and
D,=D(kh) .

A small sampling time unit is necessary to give a good approximation. We will be
dealing with the state-space descriptions (1.7, 8) for continuous-time and
discrete-time systems, respectively. The vector space, spanned by the state
vectors which are generated by all “admissible” inputs and initial states, is called
the state-space. For a better understanding, see Exercises 2.2-4.

It will be clear from Exercise 2.5 that the outputs in the state-space
descriptions (1.7, 8) are linear in the state vectors for zero input and linear in the
inputs for zero initial state. For this reason, the systems we consider here are
called linear systems. In the subject of control theory, linear systems are also
called linear dynamic systems, the state-space descriptions (1.7, 8), dynamic
equations, and the matrices A(t), B(t), C(t), and D(t)in (1.7) or A, B, Cy,and D, in
(1.8) are called system (or dynamic), control, observation (or output), and transfer
matrices, respectively.

Exercises

1.1 Give a state-space description for the input-output relations v” +av'+
bv=u by using the state variables x, =ov+ v’ and x,=7yv+ v’ where
ad— fiy #0.

1.2 Determine all constants a, b and ¢ so that the linear system with input-
output relations v’ +v'=au+ bu' + cu” has a state-space description of the
form given by (1.2).

1.3 By using Exercise 1.1, show that the matrices 4, B, and C in the state-space
description (1.2) for the linear system with input-output relations
v +av'+bv=0 are not unique.

1.4 Determine the constants a; and b, in (1.4) for the input-output relations of
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1.6

Exercises 7

the linear system (1.5) where A4, B, C and D are arbitrary nxn,nx 1, 1 xn,
and 1 x 1 matrices.
(a) Give a state-space description for the two-input and two-output system

1 ! ! —_

Ui +ay, vy +a,0,+b b v =0u, +Bu,
1 ’ ! —_

Uy + Ay, Uy + 05,0, +by  Vy +byv,=0u; + Bru, .

(b) Derive a general state-space description for the normal n-input and
n-output system

n n

(n 1 n—j 2 n—j n (n—j)y _

v+ Y {aipf P +al o+ L Hat el =) oy ;.

C =1 =1

n

(n 1 n—j 2 n—j (n— —_

o™+ Y {alo¢ P +a2o§ N+ L +al oD Z o, U
=

(a) Give a state-space description for the discrete-time system defined by
the difference equation

Uke2tUcsr TO =0y .

<Hint: Let x; , =0}, X5 ;=04 and

_I:xl‘k} >

xk—‘ .

X2,k

(b) Derive a general state-space description for the discrete-time system
defined by the difference equation

AUk int+ A Vgsp1+ .- +aU=botly 4+ ... +b,u; ,

where a,=1, m<n, and m, n are arbitrary positive integers.



2. State Transition Equations and Matrices

In this chapter, we will discuss the solution of the state-space equation assuming
that the initial state as well as all the governing matrices are given. Both
continuous-time and discrete-time systems will be considered. It is clear that only
the input-state equation has to be solved.

2.1 Continuous-Time Linear Systems

From the theory of ordinary differential equations, if A(t) is an n x n matrix
whose entries are continuous functions on an interval J which contains ¢, in its
interior, then the initial value problem

x=A()x

x(tg)=e; , 2.1)

where ¢;=[0...0 1 0...0]", the entry 1 being the ith component, has a
unique solution which we will denote by ¢,(t, t,). Let @(t, t,,) be the n x n matrix
with ¢,(t, t,) as its ith column. Since these column vectors are linearly indepen-
dent, the “fundamental matrix” ®(t, t,) is nonsingular. For convenience, we
assume that J is an open interval. Since the above discussion is valid for any ¢, in
J, we could consider ®(s, t) as a matrix-valued function of two variables in J.
Clearly,

o, =1,

the identity matrix, for all ¢ in J. Set
F(s,)=®(s, )® (¢, 1) .

Then F(s, 1)=®(s, 1)@ (1, 1) =D(s, 1), ie., F=®d, so that
O(s, )=D(s, )P (¢, 1)

or, equivalently, (s, t) satisfies the “transition” property:
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@(s, 1) =D(s, HD(t, 7) , (2.2)

where s, t, and t are in J.
We now consider the input-state equation with a given initial state x,, at time
t,, namely

X=A(t)x+B({)u
(2.3)
x(tO)sz >

where A(t) and B(t) are nxn and nxp matrices respectively, and u is a
p-dimensional column vector. Although weaker conditions are allowed, we will
always assume, for convenience, that all entries of A(t) are continuous functions
on J and that the entries of B(t} as well as the components of # are piecewise
continuous on J. Again from the theory of ordinary differential equations, (2.3)
has a unique solution given by

x(t)=0(t, to)x(t0)+j ®(t, 1) B(t)u(t)dr , (2.4)

0o

where, as usual, integration is performed componentwise, and ®@(t, t,) is the
fundamental matrix of the first order homogeneous equation x= Ax discussed
above. In the subject of control theory, one could think of u as the control
function that takes an initial state x(¢,) to a state x(t) in continuous time from
time ¢, to time ¢, and “equation” (2.4) describes how this is done. Because of its
formulation, this equation is also called the (continuous-time) integral equation
of u. Note that the solution of this equation for the control function u that takes
x(to) to x(t) is given by the input-state equation (2.3). The matrix ®(, ,) that
describes this transition process is usually called the transition matrix of the
linear system.

2.2 Picard’s Iteration

In orderto have a better understanding of the transition process, it is important
to study the transition matrix. We first consider the special case where A =[a;;] is
a constant matrix. Denote by |A|, the [! norm of this matrix; that is

[Al =Z laij[ .
i

By Exercise 2.8, we have |4%|, <|A4|?, ..., |A4"|, <|A[", ..., and this allows us
to define

0 t"
etA_ Z A"
n=0 n!
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since the sequence of partial sums of the infinite series is a Cauchy sequence:

N t" [ef®
< Y R |4"

n=M

n=M n‘

ltHAh)

which tends to 0 as M and N tend to infinity independently. (Here, the triangle
inequality in Exercise 2.8 has been used.) In addition, it is also clear from this
infinite series definition that

d tA
- =A tA .
dte c

Hence, it follows immediately that the solution ¢;(t, t,) of (2.1) is given by

Pilt, to)=e"""Me; ;

that is, the transition matrix in (2.4) for the system with constant system matrix A
is given by

D(t, to)=et 11 (2.5)

When A=A(t) is not a constant, that is when time-varying state-space
equations are considered, an explicit formulation of the transition matrix is
usually difficult to obtain. The following iteration process, usually attributed to
Picard, gives an approximation of ®(t, t,). Again, for convenience, we assume
that the entries of A(t) are bounded functions in J, so that a positive constant C
exists with

|[A(t)];<C< o0, ted .
We start with the identity matrix. Set

Po(H)=1I

P,(t)=1+ [ A(s)Po(s)ds

Pyt)=1+ y A(S)Py— 4 (s)ds .
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Then for all teJ and N> M, we have

N-1
IPN(t)—PM(t)Ilz kZM [Pk+l(t)_Pk(t)]
= 1
t S1 Sk
N-1
=Y A(sl)J‘A(sz).,.‘[A(skﬂtl)dskﬂ...ds1
k=M 1
to to to
t Sk
N-1
<3 J...jdsk+1...dslck+1
k=M
to to

CNSH(Cle—=tol)f*!
kS (k1)

which tends to zero uniformly on any bounded interval as M, N— co indepen-
dently. That is, {Py(t)} is a Cauchy sequence of matrix-valued continu-
ously differentiable functions on J. Let P(t, t,) be its uniform limit. Since

d
it Py(t)=A(t)Py -, (1)

and Py(ty)=1, it follows from a theorem of Weierstrass that

d
o P(t, 10)= AW P(t, 1)
P(to, to)=1I .

This, of course, means that the columns of P(t,t,) are the unique solutions
¢;(t, to) of the initial value input-state equations (2.1), so that P(, t,) coincides
with ®(t, t,). We have now described a simple iteration process that gives a
uniform approximation of ®(t, t,). It also allows us to write:

O, to) =1+ [ AW)ds+ | Alsy) | Alsy)dsyds; + . ... . 2.6)

It is clear that if A= A(z) is a constant matrix, then (2.5) and (2.6) are identical,
using the definition of exp[(t—1t,)A].
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2.3 Discrete-Time Linear Systems

We now turn to the discrete-time system. The input-state equation with a given
initial state x, is given by

X1 =Ax, + By, k=0,1,..., 2.7
where A4, and B, are nxn and nxp matrices and u,, k=0,1,..., are
p-dimensional column vectors. Writing out (2.7) fork=0, 1, . . . , respectively, we
have

xl =A0xo+Bou0

x,=A,x;+Bu,

X, 1 =Ax,+Bu, .

Hence, by substituting the first equation into the second one, and this new
equation into the third one, etc., we obtain

N
xNz(DNox0+kZI OBy _yuy -,y (2.8)

where we have defined the “transition” matrices:

Oy =1 _ (2.9)
Gu=A;_,... A, for j>k.

In particular, if 4, = A for all k, then ®;, = 4’ for j > k. Equation (2.8) is called
the (discrete-time) state transition equation corresponding to the input-state
equation (2.7) and @, (j>k) are called the transition matrices. The state
transition equation describes the transition rule in discrete-time that the control
sequence {u, } takes the initial state x, to the final state x,. We remark, however,
that although the transition matrices @, satisfy the “transition” property

O,y=0,;0;, for izj>k,

®;, is not defined for j < k, and in fact, even if A, = 4 for all k, ®,, (i > k) is singular if
A is. This shows that discrete-time and continuous-time linear systems may have
different behaviors. However, if the system matrices 4,, . . . , A;_y, where k <},
are nonsingular, it is natural to introduce the notation ®,;=4, "' ... 4/}, so
that ®,;=®;,' or ®,;®;, =1, completing the transition property.



2.4 Discretization 13

2.4 Discretization

If the discrete-time state-space description

Xy 1= A X+ By, 2.10)
Uk=Ckxk+Dkllk .

is obtained as an approximation of the continuous-time state-space description

i=A(t)x+B()u

(2.11)
v=C(t)x+D(t)u
by setting, say, x, =x(kh), u, =u(kh) and v, =v(kh), then the singularity of the
matrices A,, and consequently of the transition matrices ®;, (j= k), may result
from applying a poor discretization method. In order to illustrate our point here,
we only consider the case where A= A(t) is a constant matrix.
As pointed out in the last chapter, a “natural” choice of A4, is

A, =1+hA(kh) , (2.12)
the reason being
Xy 41— X, =hx(kh)=h(A(kh)x,— B(kh)u,) .

Of course, if the time sample h is very small then A4, will usually be nonsingular.
However, in many applications, some entries of 4 may be very large negative
numbers so that it would become difficult, and sometimes even numerically
unstable, to choose very small h. The state transition equation (2.4) with the
transition matrix given in (2.5), being an integral equation, gives a much more
numerically stable discretization. Setting t,=kh and t=(k+ 1)h, we have

(k+1)h
X1 =O((k+ Db kh)x,+ [ @ ((k+ Dh, 7) B(r)u(t)dr (2.13)
kh
so that the matrix A, in the discrete-time state-space description (2.10) is now

A =D ((k+ 1), kh) . (2.14)

This is a nonsingular matrix, and consequently the corresponding transition
matrix becomes

®,;=(ih, jh) .

We note, in particular, that the restriction i>j can now be removed. We also
remark that if 4 is a constant matrix the choice of A4 in (2.12) as a result of
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discretizing the input-state equation (2.11) gives only the linear term in the series
definition of exp(hA). To complete the discretization procedure in (2.13), we
could replace u(t) by #, and apply any simple integration quadrature to the
remaining integral. If, for instance, both 4 and B in the continuous-time state-
space description (2.11) are constant matrices, then the remaining integral is
precisely

h Mdt=h{1 hA h2A2
ge t= +'2—! +§ + ...

and the matrix B, in the corresponding discrete-time state-space (2.10) descrip-
tion becomes

B,=h|{1I hA hZAZ B

which is again a constant matrix.

Exercises

2.1 Solve the differential equation (2.1) for

A= 1 ¢
1o 1
and determine the corresponding transition matrix ®(t, t,).
2.2 Recall that the state space X is the vector space of all (vector-valued)
functions each of which is a (unique) solution of (2.3) for some initial state

and some input (or control) u. Consider an admissible class % of input
functions and let X (%) be the subspace of X where only input functions in %

are used. Determine X(#%) for A=[0], B=[1] and # =sp{1, . .., t"}, the
linear span of 1, ..., V.
2.3 Repeat Exercise 2.2 for the admissible class % =sp{u,, . . . , uy} where
0 if r<y
ui(t):{
1 if >
and 0=ty <t; < ... <ty<o0 .

2.4 Refer to Exercise 2.2 for the necessary definitions. Let

oy w o))

Find a basis of X (sp{l, ..., "}).
(Hint: Use the state transition equation.)
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2.6

27

2.8

Exercises 15

Show that a system with state-space description given by (2.10) or (2.11) is
indeed a linear system in the sense that the output is linear in the state
vectors for zero input and linear in the input vectors for zero initial state.
(Hint: An operator L is said to be linear if L(ay+bz)=aLy+bLz.) Also
show that if the output is linear in the input and x,, is the initial vector, then
Cixo=0for ali kif (2.10) is considered, and C(t)x, =0 for all t > t, if (2.11) is
considered.

Let |A], be the I” norm of the matrix A=[ga;;(t)], that is, [4]|,=|A(t)],
=(Z; jla;;(t)|P)'’?. Under the hypothesis

[1A@)[Edt< o0 ,
J .

where p>1, prove that the infinite series (2.6) converges uniformly to
®(t, ty) on every bounded subinterval of J.
(Hint: Use Holder inequality:

;IA(t)B(t)hdtS(;IA('?)I,’;)”"(;IB(t)l;’)”" )

where 1/p+1/g=1and 1<p<o0.))
Discretize the continuous-time input-state equation

i el e

by using both methods discussed in Sect. 2.4 and compare both transition
state equations. Try to bring [§] to the origin in both cases. Use h=1/5
and 1/10. '

Let | 4|, be defined as in Exercise 2.6. Show that if 4 and B are matrices of
the same dimension, then |A+B|,<|A|,+|B|, (called the triangle in-
equality).

(Hint: Use the Holder inequality: For real numbers a;; and b,

ijs
' 1/p 1/q
Z lai;| 16yl S(Z Iaijlp> (Z Ibij|q>
ij i,J iJj

where 1/p+1/g=1 and 1<p< o).



3. Controllability

The notion of controllability is introduced in this chapter. Both continuous- and
discrete-time systems will be studied. If the system is time-invariant, then its
controllability is completely determined by a constant matrix.

3.1 Control and Observation Equations

A linear system with continuous-time state-space description
x=A(t)x+ B(t)u

(3.1)
v=C(t)x+ D(t)u

can be considered as a “control-observation” process, with #=u(t) denoting the
control function and v =v(t) the observation function. Under the influence of the
control u, the state vector x = x(t) travels in the n-space R" and traces a path in R"
as time increases in the allowable time interval. In order to give a more complete
discussion, we always assume that the time interval J extends to positive infinity,
and to apply the theory developed in Chap. 2, we also assume that the nxn
system matrix A= A(t) has continuous entries on J. If the admissible class of
control functions # contains only piecewise continuous (or more generally
bounded measurable) functions on J, then the entries of the control matrix
B=B(t) are allowed to be piecewise continuous (or more generally bounded
measurable) functions; but if delta distributions are used as control “functions”,
then we must restrict the entries of the control matrix to continuous functions on
J. The first equation in (3.1), namely the input-state relation, describes the
control process and hence will be called the control differential equation. From
Sect. 2.1, we know that this equation has an equivalent formulation

x(£)=D(t, to)x(to) + jf(l)(t, s)B(s)u(s)ds (3.2)

which describes the path of travel of the state vector x under the influence of the
control function u as the time parameter ¢ increases starting at the initial time ¢,
Since the transition matrix ®(t, t,) in the state-transition equation (3.2) is always
nonsingular, the transition process is reversible; that is, multiplying both sides of
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(3.2) by @ !(t, t5)=D(t,, t), we obtain the same equation with ¢ and t, inter-
changed (although t>t,). The second equation in the state-space description
(3.1) will be called the observation equation since it describes the observation
process. Of course analogous terminology and discussion apply to the discrete-
time state-space description, but since the transition matrix in the discrete (or
digital) model may turn out to be singular, a reversed transition may be
impossible. We will postpone discussing the control properties of this model to
the end of this chapter.

3.2 Controllability of Continuous-Time Linear Systems

The notion of controllability and complete controllability is introduced in this
section. We first discuss controllability of a continuous-time linear system; the
discrete-time setting being delayed to Sect. 3.4.

Definition 3.1 A linear system & with a state-space description given by (3.1) is
said to be controllable if, starting from any position x, in R”", the state vector x at
any initial time t, € J, can be brought to the origin 0 in R” in a finite amount of
time by a certain control function a. In other words, the system & is controllable
if for arbitrarily given x, € R" and t, € J, there exists a t, > t, such that the integral
equation

D(t,, to)x, +tj"1(I>(t1, S)B(s)u(s)ds=0 (3.3)

has a solution u in the admissible class of control functions.

Hence, to verify controllability, one has to prove the existence of both ¢, >¢,
and a control function u for any position x, in R". Our first goal is to eliminate
the difficulty imposed by the dependence of time on space by proving the
existence of a “universal” finite time-interval. To do this we introduce the
following subspaces. Let toeJ be fixed, and for each t; >t,, let ¥, be the
collection of all x, in R” such that (3.3) has an admissible solution #, and

V=0{V,t;>to} .

Then the above definition of controllability has the following equivalent
statement.

Lemma 3.1 % is controllable if and only if V=R".

It is clear that ¥V and V,, t>1t,, are all subspaces of R” and that if (3.3) has a
solution # and t,>t,, then (3.3) with t; replaced by t, also has a solution
(Exercise 3.1). Hence ¥V is a subspace of V, if t>s>t,. Let f(t) denote the
dimension of ¥,. Then fis a nondecreasing integer-valued function with

lim f(t)=dim V<n .

t—= o
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By using the definition of limit, there is a t* > t, such that | f(¢t)—dim V| <1/2 for
all t > r*, which implies immediately that f(¢t*)=dim V and V,.=V. That is, we
have proved the following result.

Theorem 3.1 Let % be a linear system with the state-space description (3.1) and
to €J. Then there exists a (finite) t* >t with V.= V. Furthermore, the system & is
controllable if and only if for any x,€R" the equation

D(t*, to)x,+ lj}:CI)(t*, s)B(s)u(s)ds=0

has an admissible solution u.

The interval (t,, t*) will be called a universal time-interval for the system &
with initial time ¢,. As discussed earlier (Exercise 3.1), if (3.3) has a solution # with
t, <t*, then it has a solution when ¢, is replaced by t*.

In the study of controllability, two linear transformations are of particular
importance. They are

Lu= j'fl)(t, s)B(s)u(s)ds  and (3.4

0,= j @(t, s)B(s) BT(s)D(¢, s)ds . (3.5)

The first one maps the space of admissible control functions into R" and the
second one is an n x n matrix. We will next show that they have the same image.
Using notation from linear algebra, we let “Im” denote “the image of” and “v”
denote “the null space of”.

Lemma 32 Im{L,}=Im{Q,} for all t>1,.

We first show the easy direction. Let x be in Im{Q,}. Then there is a y e R"
such that

t
x=Q,y={ &, s)B(s)u(s)ds=L,u
with u defined by
u(s) = BT(s)®7(t, s)y .

To establish the other direction, we first note that Q, is symmetric so that Im{Q,}
is orthogonal to vQ, (Exercise 3.2). Hence, if x is not in Im{Q,}, we can decompose
x into x=x, +x, where x, e Im{Q,} and 0#x, €vQ,, so that x"x, =x{x, +x]x,
=x7x,#0. If, on the other hand, x is in Im{L,}, then there is some control
function u with Lu=x, so that

[x70(t, s)B(s)u(s)ds=x]Lu=x]x#0
to
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and xI®(t, s) B(s) cannot be 0. This contradicts the fact that
t t
J[x7®(t, 5)B(s)] [x3®(t, ) B(s)]"ds =x§[j®(t, s)B(s) BT(s)®™(t, s)dsjlx2
to to

=x30,%,=0 .

That is, if x¢ Im{Q,}, then x¢Im{L,} either, establishing the other direction of
the lemma.
We are now ready to state an important result of controllability.

Theorem 3.2 Let & be a continuous-time linear system with a universal time
interval (ty, t*)=J. Then & is controllable with initial time t, if and only if the
matrix Q. is nonsingular.

This result follows from Lemma 3.2 by using ¢t =¢* and the fact that ®(t*, t,) is
nonsingular (Exercise 3.3). It should be pointed out that in general it is
impossible to determine the rank of the matrix Q.. since it is very difficult to
decide how large t* has to be. However, if the system and control matrices 4 and
B, respectively, are constant matrices, then Q,. is nonsingular if and only if Q, is
nonsingular for any ¢t > t, (Exercises 3.4 and 5). As a consequence of Theorem 3.2,
we can extend the idea of controllability to “complete controllability”.

3.3 Complete Controllability of Continuous-Time Linear Systems

We next discuss the notion of complete controllability.

Definition 3.2 A system & with state-space description (3.1) is said to be
completely controllable if, starting from any position x, in R", the state vector x at
any initial time t,eJ can be brought to any other position x, in R” in a finite
amount of time by a certain control function u. In other words, & is completely
controllable, if for arbitrarily given x, and x, in R" and t, € J, there exists a t; >t
such that the integral equation

D(t,, to)x, +t§l¢>(t1, s)B(s)u(s)ds=x,

has a solution # in the admissible class of control functions.

It is important to observe that, at least in continuous-time state-space
descriptions, there is no difference between controllability and complete
controllability. It will be seen later that this result does not apply to discrete-time
linear systems in general.

Theorem 3.3 Let & be a continuous-time linear system. Then & is completely
controllable if and only if it is controllable. Furthermore, if (to, t*) = J is a universal
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time-interval and x,, x, are arbitrarily given position vectors in R", then the
equation

D(t*, to)xo+tjfd)(t*, s)B(s)u(s)ds=x, (3.6)

has an admissible solution u.

In fact we can prove more. Let (t,, t*) be a universal time-interval. We
introduce a universal control function u=u* that brings the state vector x from
any position y, to any other position y, in R" defined by

u*(t)= BT(®T(t*, )Q;x (¥, — D(t*, to) o) -

This is possible since Q,+ is nonsingular if the system is controllable by using
Theorem 3.2.

Next, we consider the special cases where the n x n system matrix 4 and the
n x p control matrix B are constant matrices. Under this setting, we introduce
an n x pn “compound” matrix

M, z=[BAB... A" 'B] 3.7)
and give a more useful criterion for (complete) controllability.

Theorem 3.4 A time-invariant (continuous-time) linear system & is (completely)
controllable if and only if the n x pn matrix M 45 has rank n.

To prove this theorem, let us first assume that the rank of M, is less than n,
so that its n rows are linearly dependent. Hence, there is a nonzero n-vector a
with @M ,z=[0 ... 0], or equivalently, aTB=a"AB= ... =aT4""'B=0. An
easy application of the Cayley-Hamilton Theorem now gives a’A*B=0 for
k=0,1,2,..., so that a"exp[(t* —s)4]B=0 also (Exercise 3.7). Hence,

*
aT<e(t*—m)A ’0+ j e(l*—s)A Bll(S) dS_yl>:aTe(x*—to)Ay0_aTy1 .

to

Hence, there does not exist any control function # that can bring the state vector
from the position y,=0 to those positions y, with a¥y, #0. In particular, the
position y; =a#0 cannot be reached from 0. Hence, (complete) controllability
implies that M ,z has rank n. Conversely, let us now assume that M,z has rank n,
and contrary to what we must prove, that & is not controllable. Let (¢, t*) be
a universal time-interval. Then from Theorem 3.2 we see that Q,. is singular so
that there exists some nonzero x,e€R" with Q.x,=0. Hence, since ®(t, s)=
exp[(t —s)A], we have

*

[(xZe®=94B) (xTe” ~94B)Tds = x[Qu x,=0
to
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so that
xle® 94B=0

for to <s<t*. Taking the first (n — 1) derivatives with respect to s and then setting
s=t* we have

xTA*B=0, k=0,...,n—1,

so that xJM ,;=0. This gives a row dependence relationship of the matrix M,y
contradicting the hypothesis that M,z has rank n.

In view of Theorem 3.4, the matrix M, in (3.7) is called the controllability
matrix.of the time-invariant system.

3.4 Controllability and Complete Controllability
of Discrete-Time Linear Systems

We now turn to a linear system & with a discrete-time state-space description

Xy = A X+ By, (38)
vk: Ckxk+Dkuk

where the first equation is called the control difference equation and the second
will be called the observation equation in the next chapter. The state-transition
equation can be written, by a change of index in (2.8), as

k
xk=q)ijj+'=;1q)ki3i_lui*1 (3.9)

where the transition matrix is

Oyi=Ay_y ... A;, k>j (3.10)
with ®@,; =1, the identity matrix. Analogous to the continuous-time state-space
description, we define “controllability” and “complete controllability” as follows:

Definition 3.3 A system & with a state-space description given by (3.8) is said
to be controllable if, starting from any position y, in R the state sequence {x,},
with any initial time /, can be brought to the origin by a certain control sequence
{w,} in a finite number of discrete time steps. It is said to be completely
controllable, if it can be brought to any preassigned position y, in R". Thatis, & is
controllable if for any y, in R" and integer [, there exist an integer N and a
sequence {#,} such that

N
Oyyo+ D, DOyBr— -1 =0 (3.11)

k=1+1
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and is completely controllable if for an additional preassigned y, in R*, N and
{u,} exist such that

N

®le0+k_;l¢NkBk—-l”k—1:yl . (3.12)

Unlike the continuous-time system, there are controllable discrete-time
linear systems which are not completely controllable. An example of such a
system is one whose system matrices A, are all upper triangular matrices with
zero diagonal elements and whose nx p control matrices B, =[b;;(k)], p<n,
satisfy b;;(k)=0 for i>j. For this system even the zero control sequence brings
the state from any position to the origin but no control sequence can bring the
origin to the position [0 ... 0 1]7 (Exercise 3.8).

Any discrete-time linear system, controllable or not, has a controllable
subspace V of position vectors y € R" that can be brought to the origin by certain
control sequence in a finite number of steps. Let ¥, be the subspace of y e R” that
can be brought to 0 in k— [+ 1 steps. Then if y can be brought to zero in j, steps
and j, <j,, it can certainly be brought to zero in j, steps, it then follows that V; is
a subspace of V, for j<k. Let f, be the dimension of V,. Since V is the union of all
Vi, k=1, {f,} converges to dim V. Therefore there exists an /* >/ such that
Ve=V.{l,. .., I*} will be called a universal discrete time-interval of the system.
This gives the following resulit.

Theorem 3.5 Let & be adiscrete-time linear system and | any integer. Then there
exists an integer I* > | such that Vix=V. Furthermore, & is controllable if and only

if for any y, in R there exists {u,,. .., up_,} such that (3.11) is satisfied with
N=1[*
Let {I,...,I*} be a universal discrete time-interval of the system, and

analogous to the continuous-time setting, consider the matrix

l#
Rp= Z q)l*iBi—1BiT—1(DIT*i . (3.13)

i=T+1
If R+ is nonsingular, a universal control sequence can be constructed following
the proof of Theorem 3.3 to show that the system is completely controllable. On

the other hand, if the transition matrices are nonsingular, controllability implies
that R is nonsingular (Exercise 3.10). Hence, we have the following resuit.

Theorem 3.6 Let & be a discrete-time linear system with initial time k=1 and
nonsingular system matrices A,, . . . , Ax_ where {I,. . ., I*} is a universal discrete
time-interval. Then & is completely controllable if and only if it is controllable.

It is important to note that although the system matrices, and consequently
the transition matrices, could be singular, it is still possible for the matrix Ry to
be nonsingular. In fact, regardless of the singularity of A, ..., Ar_,, the
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nonsingularity of Ry characterizes the complete controllability of the discrete-
time system.

Theorem 3.7 A discrete-time linear system is completely controllable if and only
if the matrix Ry is nonsingular.

One direction of this statement follows by constructing a universal control
sequence with the help of R#* (Exercise 3.10). To prove the other direction, we
imitate the proof of Lemma 3.2 by investigating the image of the linear operator
Sy defined by

l*
Sp{uy) = Z @y By 1y y - (3.14)
k=1+1
Clearly, if the system is completely controllable so that any position in R” can be
“reached” from 0, then the image of S is all of R". Hence, if one could show that
the image of Ry is the same as that of Sp, then Ry would be full rank or
nonsingular. The reader is left to complete the details (Exercise 3.15).
We now consider time-invariant systems. Again the controllability matrix

M, z=[BAB... A" 'B]
plays an important role in characterizing complete controllability.

Theorem 3.8 A time-invariant discrete-time linear system is completely control-
lable if and only if its controllability matrix has full rank.

Since we only consider constant system and control matrices A and B, the
state-transition equation (3.9) becomes:

k .

=A%+ Y A 'Bu,_,,

1

+1

i=

where again [ is picked as the initial time. In view of the Cayley-Hamilton
Theorem, it is natural to choose ¥ =n+1, n being the dimension of the square
matrix 4. That is, the state-transition equation becomes

U, v1-1
Ml =—x,+A"x, . (3.15)
u

Hence, if any “position” x, in R” can be “reached” from x,= 0, the range of M, is
all of R" so that it has full rank. Conversely, if the row rank of M, is full, then the
sequence {u,, . . . , U, +;- 1} can be obtained for arbitrary initial and final states x,
and x,, respectively, by solving (3.15). This completes the proof of the theorem.

As a bonus of the above argument, we see that {I,...,n+1} is a universal
discrete time-interval. That is, if the state vector x, at a position y, in R" cannot
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be brought to the origin in n steps, it can never be brought to the origin by any
control sequence #, no matter how long it takes.

Exercises

31

3.2

33
34

35

3.6

3.7

3.8

Let ¥, be the collection of all x, in R" that can be brought to the origin in
continuous-time by certain control functions with initial time z, and
terminal time ¢, and V be the union of all ¥,. Prove that ¥ and V, are
subspaces of R". Also show that ¥ is a subspace of V, if and only if s<t by
showing that if x, can be brought to 0 at terminal time s, it can be brought
to 0 at terminal time .

Let R be a symmetric nx n matrix and consider R as a linear trans-
formation of R” into itself. Show that each x in R” can be decomposed into
x=x,+x, where x, isin Im{R} and x, is in vR and that this decomposit-
ion is unique in the sense that if x is zero then both x, and x, are zero, by
first proving that Im{R} =(vR)*.

By applying Lemma 3.2 with t=t*, prove Theorem 3.2.

Let

oy o)

Find @, and determine if the linear system is controllable.
Let

oy ] o)

Determine all values of a and b for which the linear system is controllable.
Verify the statement that if Q, is nonsingular for some ¢, it is also
nonsingular for any t>t,,.

Let Q.+ be nonsingular where (t,, t*) is a universal time-interval. Show that
the universal control function

w¥(1)=BT(O)@T(t*, )07 [y, — D(t*, to)yo]

brings x from y, to y,. (This proves Theorem 3.3).

Let A be an n x n matrix. Show that if a’4*=0 for k=0,...,n—1, then
a"exp(bA)=0 for any real number b and ac R".

Let A,=[a;;(k)] be nxn and B,=[b;;(k)] be nx p matrices where p<n
such that g;;(k)=b;;(k)=0 if i>j. Show that the corresponding discrete-
time linear system is controllable but not completely controllable. Also,
verify that the system
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3.10

3.11

3.12

313

3.14

3.15

Exercises 25
10 0 -1 0
Xer1= 1 Oxk+ 01 0 uy
_ a
Xo= b

is controllable but not completely controllable for any real numbers a
and b.
Let

Although the system matrices A, are singular, show that the correspon-
ding linear system is completely controllable and that any universal
discrete time-interval is of “length” two.

Prove that if Ry is nonsingular then the corresponding linear system is
controllable. Also show that if the state vector x, can be brought from x,,
to the origin then y,= —®;x, is in the image of R This last statement
shows that R is nonsingular since y, represents an arbitrary vector in R".
By imitating the proof of Theorem 3.3 in Exercise 3.6, give a proof of
Theorem 3.6.

Show that a universal discrete time-interval for a time-invariant system
can be chosen such that its “length” does not exceed the order of the
system matrix 4. Give an example to show that this “length” cannot be
shortened in general.

Let & be a linear system with the input-output relation v +av'+bv=
cu' + du. Determine all values of a, b, ¢, and d for which this system is
(completely) controllable.

Let ¥ be a discrete linear system with the input-output relation
Vg 42+ a0, 4 1 +bvy=u, 4 | + cu,. Determine all values of a, b and ¢ for which
this system is controllable, and those values for which it is completely
controllable.

Complete the proof of Theorem 3.7 by showing that R« and S have the
same image.
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In studying controllability or complete controllability of a linear system &, only
the control differential (or difference) equation in the state-space description of &
has to be investigated. In this chapter the concept of “observability” is
introduced and discussed. The problem is to deduce information of the initial
state from knowledge of an input-output pair over a certain period of time. The
importance of determining the initial state is that the state vector at any instant is
also determined by using the state-transition equation. Since the output function
is used in this process, the observation equation must also play an important role
in the discussion.

4.1 Observability of Continuous-Time Linear Systems

Again we first consider the continuous-time model under the same basic
assumptions on the time-interval J and the n x n and n x p matrices A(t) and B(t),
respectively, as in the previous chapter. In addition, we require the entries of the
g x nand g x p matrices C(t) and D(t), respectively, to be piecewise continuous (or
more generally bounded measurable) functions on J.

We will say that a linear system & with the state-space description

X=A(t)x+ B(t)u
v=C(t)x+D(t)u 4.1)

has the observability property on an interval (t,, t,) < J, if any input-output pair
(u(2), v(t)), to<t<t,, uniquely determines an initial state x(t,).

Definition 4.1 A linear system & described by (4.1) is said to be observable at an
initial time t, if it has the observability property on some interval (¢, t,) where
ty>to. It is said to be completely observable or simply observable if it is
observable at every initial time ty€J.

Definition 4.2 A linear system & described by (4.1) is said to be totally
observable at an initial time t, if it has the observability property on every interval
(to, t;) where t, >t,. It is said to be totally observable if it is totally observable at
every initial time tyeJ.
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It is clear that every totally observable linear system is observable. But there
are observable linear systems that are not totally observable. One example is a
time-varying linear system with system and observation matrices given by

0 —1
A=[O O] and CO=[1 1—lt—1]] ,

respectively. This system is observable at every initial time t,>0, totally
observable at t,> 1, but not at any initial time between 0 and 1 (Exercise 4.1).
Another interesting example is a linear system with the same system matrix A
and with the observation matrix given by [1 1 +|t— 1|]. It can be shown that this
system is totally observable at any initial time t, with 0<t,<1 but is not
observable at any t,>1 (Exercise 4.2). To understand the observability of the
above two linear systems and other time-varying systems in general, it is
important to give an observability criterion. The matrix

P= j ®T(z, t,)CT (1) C(1)D(x, to)dT 42)

plays an important role for this purpose.

Theorem 4.1 A linear system & described by (4.1) is observable at an initial time
to if and only if the square matrix P, given by (4.2) is nonsingular for some value of
t>to. In fact, it has the observability property on (to, t,) if and only if P, is
nonsingular.

Suppose that & is observable at t,, and the zero input is used with output
vo(t). Then there is a ¢, >t, such that the pair (0, v,(t)), for t, <t <t,, uniquely
determines the initial state x(t,). Assume, contrary to what has to be proved, that
P, is singular for all ¢ > t,. Then, there is a nonzero x, (depending on t,) such that

xJ P, x,=0 .
It therefore follows from (4.2) that
C(t)®(t, ty)x,=0

for t,<t<t,. However, from the state-transition equation with u=0, we also
have

vo()=COP(t, £0)x(to) ,
so that v, (t)= C(t)®(t, to)(x(to) + 2x,) for any constant a, contradicting the fact
that the pair (0, vy(¢)), to<t<t,, uniquely determines x(t,). To prove the

converse, assume that P,, is nonsingular for some t, >t,. Again from the state-
transition equation, together with the control equation in (4.1), we have

C@)®D(t, to)x(ty)=v(t)— D(t)u(t) + } C(t)®(z, 7)B(t)u(t)dr . 4.3)
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Multiplying both sides to the left by ®7(¢, t,) C(t) and integrating from ¢, to t,,
we have

P, x(ty)= thDT(t, to)CT()v(t)dt
- I @7(t, t,) CT(t)D(u(t)dt

tt
— [ [ ®T(t, 1) CT(t) C(1)@(t, T)B(r)u(zr)dds .

toto
Since P,, is nonsingular, x(t,) is uniquely determined by # and » over the time
duration (¢,, t,). This completes the proof of the theorem.

For time-invariant systems, we have a more useful observability criterion.

Let A and C be constant nxn and g x n matrices and consider the gnxn
compound matrix

C

CA
Nea=] . : (4.4)

CAn—l

In view of the following theorem, N, will be called the observability matrix of the
linear system.

Theorem 4.2 A time-invariant (continuous-time) linear system & is observable if
and only if the qn X n matrix N4 has rank n. Furthermore, if & is observable, it is
also totally observable.

Let us first assume that the rank of N, is less than n, so that the columns of
N, are linearly dependent. That is, a nonzero n-vector a exists such that
Nc4a=0, or equivalently,

Ca=CAa= ... =CA" 'a=0 .

An application of the Cayley-Hamilton Theorem immediately gives Cexp[(z
—tg)A] a=0 for all t>t, (Exercise 3.7). Now, multiplying to the left by the
transpose of Cexp[(t—t,)A] and integrating from ¢, to ¢, we obtain

Pa=0

by using (4.2) and the fact that ®(z, t,)=exp[(t —t,)A]. This holds for all t>¢,,.
That is, P, is singular for all t>t, where t, was arbitrarily chosen from J. It
follows from Theorem 4.1 that % is not observable at any initial time ¢, in J.
Conversely, let us now assume that N, has rank n and let ¢, be arbitrarily
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chosen from J. We wish to show that & is not only observable at ¢, but is also
totally observable there. That is, choosing any ¢, > t, and any input-output pair
(#, v); we have to show that the initial state x(¢,) is uniquely determined by u(t)
and v(¢) for t, <t <t,. Let £(t,) be any other initial state determined by u(t) and
v(¢) for to<t<t,. We must show that £(¢y)=x(t,). Now since both x(t,) and
x(t,) satisfy (4.3) for t, <t <t,, taking the difference of these two equations yields

COD(1, 1o)[x(to) — £(to)] = Ce ™ [x(to) — £(t0)]1=0 ,

for t,<t<t,. By taking the first (n— 1) derivatives with respect to t and setting
t=ty, we have

CA*(x(to)— #(t,) =0, k=0,...,n—1,

which is equivalent to N 4[x(ty)— £(t5) ] =0. Since N 4 has full column rank, we
can conclude that x(t,) and £(¢,) are identical. This completes the proof of the
theorem.

It is perhaps not very surprising that there is no distinction between
observable and totally observable continuous-time time-invariant linear
systems. It is important to point out, however, that for both time-varying and
time-invariant discrete-time linear systems, total observability is in general much
stronger than (complete) observability.

4.2 Observability of Discrete-Time Linear Systems
We now consider discrete-time linear systems. Let & be a discrete-time linear
system with the state-space description

X+ 1= A X+ By “5)

vk= Ckxk-i-Dkllk .

Analogous to the continuous-time case, & is said to have the observability

property on a discrete time-interval {I, ..., m}, if any pair of input-output
sequences (#,, v;), k=1,..., m, uniquely determine an initial state x;; or
equivalently,

C@yux,=0, 4.6)

k=1 ..., m, if and only if x,=0, where ®,=1 and ®,;=A4,_, ... A4, for k>1
(Exercise 4.5). Hence, it is clear that if & has the observability property on
{l, ..., m} it has the observability property on {l, . . . , r} for any r >m. For this
reason the definitions for observability and total observability analogous to
those in the continuous-time setting can be slightly modified.
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Detinition 4.3 A linear system % with a discrete-time state-space description
(4.5) is said to be observable at an initial time | if there exists an m>! such that
whenever (4.6) is satisfied for k=1, ..., m we must have x,=0. It is said to be
completely observable or simply observable if it is observable at every initial time .

Definition 4.4 A linear system &% described by (4.5) is said to be totally
observable at an initial time I, if whenever (4.6) is satisfied for k=1 and [+ 1, we
must have x,=0. It is said to be totally observable if it is totally observable at
every initial time L

To imitate the continuous setting, we again introduce an analogous matrix

L,= Y ®,CIC, 4.7)

k=I+1

and obtain an observability criterion.

Theorem 4.3 A linear system & with a discrete-time state-space description
given by (4.5) is observable at an initial time l if and only if there is an m > such that
L,, is nonsingular.

Since the proof of this theorem is similar to that of Theorem 4.1, we leave it as
an exercise for the reader (Exercise 4.6). For time-invariant linear systems where
A,=A and C,=C are nxn and g x n matrices, respectively, we have a more
useful observability criterion.

Theorem 4.4 A time-invariant (discrete-time) linear system & is observable if
and only if the observability matrix N, defined by (4.4) has rank n.

We again let the reader supply a proof for this result (Exercise 4.7). Since total
observability is defined by two time-steps, we expect it to be characterized
differently. This is shown in the following theorem.

Theorem 4.5 A time-invariant (discrete-time) linear system & is totally observ-
able if and only if the 2q x n matrix

C
Toa=| 4

has rank n.

We call T, the total observability matrix of the discrete-time system. As a
consequence of this theorem, we note that a discrete-time linear system that has
the number of rows in its observation matrix less than half of the order of its
system matrix is never totally observable. The proof of the above theorem
follows from the definition of total observability (Exercise 4.8).
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For example, if the system and observation matrices are, respectively,

000
A=[1 0 0|, C=[0 0 1] then
01 1
00 1
00 1
Nea=|0 1 1|, and T.,=
L1 01 1

have ranks 3 and 2 respectively, so that the corresponding discrete-time linear
system is completely but not totally observable.

4.3 Duality of Linear Systems

An interesting resemblance between a completely controllable time-invariant
linear system and a completely observable one (either continuous- or discrete-
time) is that they have very similar characterizations in terms of the control-
lability matrix M 5 and the observability matrix N ,, respectively. In fact, the
two continuous-time linear systems

x=Ax+ Bu
5”'{ and

*“lo=Cx+Du
N { i=A"x+CTi

#=BTx+Di ,
where A, B, and C are constant matrices, are “dual” to each other in the sense
that the controllability matrix of &, is the transpose of the observability matrix
of &,, and the observability matrix of &, is the transpose of the controllability

matrix of Z,. The same duality statement holds for the two discrete-time linear
systems

{xH 1 =Ax,+ Bu,
B and

v,=Cx,+ Du,
~ xk+1=ATxk+CTﬁk
a9 . r ~_
b, =B x,+Da, .

Hence, we obtain the following duality phenomenon by an immediate appli-
cation of Theorems 3.4 and 4.2.
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Theorem 4.6 The two continuous-time linear systems &, and &, described above
are dual to each other in the sense that ¥, is completely controllable if and only if 7,
is completely observable, and &, is completely observable if and only if Z, is
completely controllable. The same statement holds for the pair of discrete-time
linear systems &, and %,.

The formulation of a “dual system” for the time-varying setting is more
complicated. We first need the following result.

Lemma 4.1 Let ®(t, s) and \¥(t, s) be the transition matrices of A(t) and — A™(t)
respectively. Then W(s, t)=®(¢, s).

To prove this result, we first differentiate the identity W(t, s) W (s, t)=1 with
respect to t and obtain

W, (¢, s) P(s, )+ P(t, s)¥,(s, 1)=0 ,

where the subscripts 1 and 2 indicate the partial derivatives with respect to the
first and second variables. Hence,
—AT)P(t, s)WP(s, )+ P(t, s)W,(s5, )=0, or
\PZ(Sa t)=\P(S’ t)AT(t)
and the lemma follows by taking the transpose of both sides of this identity.
We are now ready to formulate the dual time-varying systems. Let
Xx=A(t)x+ B(t)u
:{ and
v=C(t)x+D(t)u
_ (x=—ATO)x+CT(t)i
<, { -
d=BT()x+D@)ii .

Then we have the following duality result.

Theorem 4.7 &, is controllable with a universal time-interval (ty, t*), where
t*>t,, if and only if &%, has the observability property on (to, t*). Also, &, has the
observability property on (ty, t,), where t, > t,, if and only if &, is controllable with
(to» t,) as a universal time-interval.

The proof of this result follows from Theorems 3.2 and 4.1 by applying
Lemma 4.1 and relating the matrix

D(to, t*)Qp D (1o, t*)
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to the P» matrix

t*

[¥T(t, o) B@)BT(t) W (¢, to)dt

to
of the system Z, (Exercise 4.9).

The negative sign in front of A7(¢) in the state-space description of %, does
not cause inconsistency in the event that 4, B, and C are constant matrices. The
reason is that the matrices

C
MAﬁz[B _AB e (_l)n—IAn_IB], NCA= —.CA

(_ l)n—'ICAn—l

have the same ranks as M,z and N, respectively.

4.4 Dual Time-Varying Discrete-Time Linear Systems

For discrete-time linear systems, we do not need the negative sign in formulating
the dual systems. We require, however, that the matrices 4, are nonsingular for
k=1 ..., I*—1, instead (Theorems 3.6 and 7). Consider

{xk+1 = Ay x, + Buy
" i and

Uk = Ckxk+Dkuk

_ - I\T T ~

= (X1 =(A ) X+ Gy 1y

ay r ~ .
vk=Bk._1xk+Dkllk .

The following duality statement can be obtained by using the character-
ization matrices Ry and L,, (Exercise 4.10).

Theorem 4.8. Let %, and 7, be the time-varying systems described above and
suppose that A, . .., Ap_ are nonsingular. Then &, is completely controllable
with a universal discrete time-interval {I, ..., I*} if and only if 7, has the
observability property on {l, . . . , I*}. Also, &, has the observability property on a
discrete time-interval {I, . . ., m} if and only if P, is completely controllable with
{l, ..., m} as a universal time-interval.

We remark that in the special case where 4,= ... =A4;_,=A is non-
singular, then Theorem 4.8 reduces to the last statement of Theorem 4.6
(Exercise 4.13).
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Exercises
4.1 Let the system and observation matrices of a continuous-time linear
system be
0 -1
[O O] and [1 1—-}t—1]],
respectively. Verify that this system is completely observable but not
totally observable at any initial time less than 1.

4.2 In the above exercise, if the observation matrix is now changed to
[1 1+4]t—1[], then verify that the new system is totally observable at any
initial time ¢, where 0 <ty <1 but is not even observable at any initial time
to=>1.

4.3 Find all values of a and b for which the linear systems with input-output
relations given by v’ —v'+v=au’+ bu is observable.

44 Let

0 0
A=[1 0] and C=[a b]
Find P, and N.,. Compare the observability criteria in terms of these two
matrices by showing that the same values of a and b are determined in
each case.

4.5 Prove that the linear system described in (4.5) has the observability
property on the discrete time-interval {I, ..., m} if and only if x,=0
whenever (4.6) holds for k=1,...,m.

4.6 Provide a proof for Theorem 4.3 by imitating that of Theorem 4.1.

4.7 Prove Theorem 4.4.

4.8 Prove that Theorem 4.5 is a direct consequence of the definition of total
observability for discrete-time systems.

4.9 Supply the detail of the proof of Theorem 4.7.

4.10 Prove Theorem 4.8.
411 Let
1 20
1 b 1
A= 01 0] and Cz[o 0 c:|.
-1 0 a
Determine all values of a, b and ¢ for which the corresponding discrete-
time linear system is completely observable and those values for which it is
totally observable.
4.12 Consider a discrete-time linear system with input-output relations given

by vg43+avgy 2 +bvy 1 v, =uy 4 +u,. Determine all values of a and b
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for which the system is completely observable. Give the input-output
relations for its dual system and determine all values of @ and b for which
the dual system is completely observable.

Let A be a nonsingular constant square matrix. Show that the two
(continuous- or discrete-time) linear systems with the same constant
observation matrix C and system matrices A and A~ !, respectively, are
both observable if one of them is observable. The analogous statement
holds for the controllability.



5. Time-Invariant Linear Systems

Time-invariant systems have many important properties which are useful in
applications that time-varying systems do not possess. This chapter will be
devoted to the study of some of their structural properties. In particular, the
relationship between their state-space descriptions and transfer functions ob-
tained by using Laplace or z-transforms will be discussed.

5.1 Preliminary Remarks

Before we concentrate on time-invariant systems, three items which are also
valid for time-varying systems shoud be noted. These remarks will apply to both
continuous- and discrete-time descriptions, although we only consider the
continuous-time setting. The discrete-time analog is left as an exercise for the
reader (Exercise 5.4).

Remark 5.1 The results on complete controllability and observability obtain-
ed in the previous two chapters seem to depend on the state-space descriptions of
the linear systems; namely, on the matrices A(t), B(t), and C(t). We note, however,
that this dependence can be eliminated among the class of all state-space
descriptions with the same cardinalities in state variables and input and output
components, as long as the state vectors are nonsingular transformations of one
another. More precisely, if G is any nonsingular constant matrix and the state
vector x is changed to y by y = G~ ! x, then the matrices A(t), B(t), and C(t) are
automatically changed to A(t)=G ' A(t)G, B(t)=G 'B(t), and C(t)=CG,
respectively. Hence, it is easy to see that if the transition matrix of the original
state-space description is ®(t,s), then the transition matrix of the transformed
description can be written as O, s) =G 1®(¢, 5)G, and it follows that the
matrices O and P,, which are used to give controllability and observability
criteria for the transformed description as Q,« and P, are for the original
description, have the same ranks as Q. and P,, respectively, so that Theorems 3.2
and 4.1 tell us that controllability and observability properties are preserved
(Exercise 5.1).

Remark 5.2 The transfer matrix D(t) is certainly not useful in the study of
controllability, and does not appear even in our discussion of observability. In
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fact, there is no loss of generality in assuming that D(t) is zero and this we will do
in this chapter (Exercise 5.2).

Remark 5.3 On the other hand the control equation in the state-space
description can be slightly extended to include a vector-valued function, namely

i=A)x+BOu+f() , (5.1)

where f(¢) is a fixed n x 1 matrix with piecewise continuous (or more generally
bounded measurable) functions in all entries, without changing the con-
trollability and observability properties (Exercise 5.3).

5.2 The Kalman Canonical Decomposition

We are now ready to study time-invariant linear systems. Let 4, B, and C be
constant n x n, n X p and g x n matrices, respectively. These are of course the
corresponding system, control, and observation matrices of the state-space
descriptions of the linear system. Also, let the controllability and observability
matrices be

MAB=[B AB...An_lB] and

C
CA
NCA: . s

CA.n—l

respectively. Recall that for both continuous- and discrete-time descriptions,
these two matrices characterize complete controllability and observability in
terms of the fullness of their ranks. Hence, if a system is not completely
controllable or observable, it is natural to work with the matrices M,z and N,
to obtain a partition of some linear combination, which we will call “mixing”, of
the state variables into subsystems that have the appropriate complete control-
lability and observability properties. In addition, since only these two matrices
will be considered, the following discussion will hold both for continuous- and
discrete-time state-space descriptions.

Let sp M denote the algebraic span of the column vectors of M,y and
sp NZ, that of the column vectors of NZ,. Next, let n, be the dimension of
spM 5[ )sp N&,. It will be seen that n, is the number of state-variables, after
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AN

%

input output

&K

KN

Fig. 5.1. Linear System %

some “mixing”, that constitute a largest subsystem %, which is both completely
controllable and observable. Also set

ny =dim(sp M) —n, ,
ny,=dim(sp NX,)—n, , and
n3=n_n1_n2—n4 .

Clearly, n,, . . ., n, are all non-negative integers. It is believable that n, is the
dimension of a subsystem %, which is completely controllable but has zero
output, and n, the number of state variables constituting a subsystem %, which
has zero control matrix but is observable. This is usually called the Kalman
Canonical Decomposition (Fig. 5.1). However, to the best of our knowledge, there
is no complete proof in the literature that %, is completely controllable and %, is
observable. Further discussion on this topic is delayed to Chap. 10.

Let {e,,...,e,} be an orthonormal basis of R" so constructed that
{e,...,€,1n,} is a basis of spM,, {e, +1,...,€,+,,} a basis of
spMup(\SP N4, and {€,41s- 1€ 4n>Cntmptnst1s---5€) @ basis
of sp NZ,. We also consider the corresponding unitary matrix

U=[e,...e,]

whose jth column is e;. This matrix can be considered as a nonsingular
transformation that describes the first stage in “mixing” of the state variables
briefly discussed above and in more detail later. This “mixing” procedure will put
the transformed system matrix in the desired decomposable form. However, we

will see later that this is not sufficient to ensure that the uncoupled subsystems
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have the desired controllability or observability properties. A second stage is
required. Anyway, at present, the state vector x(x, for the corresponding
discrete-time setting) is transformed to a state vector y (y, for the discrete-time
setting) defined by

y=U1lx=UTx.

Hence, the corresponding transformed system, control, and observation matrices
are

A=UTAU,B=UTB, and C=CU,

respectively.

We now collect some important consequences resulting from this trans-
formation. Let us first recall a terminology from linear algebra: A subspace W of
R" is called an invariant subspace of R" under a transformation L if Lx is in W for
all x in W. In the following, we will identify certain invariant subspaces under the
transformations 4 and AT. For convenience, we denote the algebraic spans of
{els""em {en|+1!"‘! en1+n1}a {en1+nz+la"'a en1+n2+n3}’ and
{€n +nmytns+15----€) by Vi, Vs, Vs, and V, respectively. Hence, we have

spMgp=V,®V,, SpMABﬂSpN£A=V2’ SpNgA=V2@V4'

Lemma 5.1 V, and sp Mg are invariant subspaces of R" under the trans-
formation A, while V, and sp NI, are invariant subspaces under AT .

We only verify the first half and leave the second half as an exercise for the
reader (Exercise 5.5). If x is in sp M 45, then x is a linear combination of
the columns of B, AB, ..., A" !B, so that Ax is a linear combination of the
columns of AB, ..., A"B. Hence, by the Cayley-Hamilton theorem, Ax is a
linear combination of the columns of B, AB, . . ., A" ! B again. That is, sp M 5
is an invariant subspace of R” under 4. By the same argument, we see thatsp N7,
is an invariant subspace under A”. Now let x be in V/;. Then x is in sp M 5 so
that Axisalsoinsp M ;= V; ® V,. Thatis, Ax = x, + x, where x, isin V/, and
x,isin ¥,.Since V, is a subspace of sp NZ,, AT x, isalsoin sp N7 ,. Hence, using
the orthogonality between the vectors in ¥; and V,, and the orthogonality
between those in ¥, and sp NI, = V, @ V, consecutively, we have

x3x;=(x;+x;)"x,
=(Ax)Tx,=xTATx, =0 .

That is, x, =0, or Ax = x; which is in V/;. This shows that V/, is an invariant
subspace under A.

We next relate the images of e; under A in_terms of the basis {e;}, using the
coefficients from the entries of A. Write A=[d;;], 1 <i,j<n. We have
the following:
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Lemma 5.2 Foreachj=1,...,n,
Ae;=d e, + ... +d,je, . (5.2)

The proof of this result is immediate from the identity AU=UA
=[e,...e,] A, since the vector on the left-hand side of (5.2) is the jth column
of AU and the vector on the right-hand side of (5.2) is the jth column of
[e,...e,]A.

We now return to the transformation y = U”x and show that the trans-
formed state-space description has the desired decomposable form. Writing

1]} n, components
¥, | } n, components
¥3 |} n; components
¥4 | } ny components

we can state the following decomposition result. Only the notation of a
continuous-time system is used, and as usual, an extra subscript is required for
the corresponding discrete-time system.

Theorem 5.1 Every time-invariant linear system & whose transfer matrix D in its
state-space description vanishes has a (nonsingular) unitary transformation
vy = UTx such that the transformed system, control, and observation matrices are of
the form

A Ayp Az Al } n,
0 A4,,0 Ay } ny
- 0 0 As; Az, } ns
0 0 0 Ay }ong’
L‘»w—f —— N~ N~
ng n; nz Ny
(B, ]} m -
B B, | }n, and C=[0 C, 0 C,.].
0 } n, - - -
0 Vo, n, n, ny N,

Consequently, the transformed state-space description
y= A y+ Bu
v=Cy

of & can be decomposed into four subsystems:

y_{).’1=/411.}’1 + Byu+f
“lv=0y,=0
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with fi = A1y, + A13y3+ A1ads >
y,:{.}.’2*_-/‘122.1’2'*’}52”‘*‘f2
V=2C),
with f, = A4 ¥4
.- V3=A5ys+0u+fi=A43393+ 13
' U=0y3=0

with f3 = A34y,4, and

{j"t = Ayays +0u=Ayy,
S

v=Cuy,

where &, has zero (or no) output for observation, &, is both completely controllable
and observable, &5 is not influenced by any control u and has no output, and & , is
not influenced by any control function.

It is important to note that although the combined (; and .%,) system with
system matrix

Al 1 A 12
0 A4,,
is completely controllable, the subsystem &, may not be controllable. This can
be seen from the following example. Consider

1 100°

0100
A= (5.3)
0000

| 0002
0
1
B=| | and C=[0 1 0 1].

0

As it stands, this is already in the desired decomposed form with n, = n, =n4
=n, = 1. The subsystem &, is clearly both completely controllable and
observable, and the combined subsystem of &%, and %, with

A, A | 11
0 Ay| |01
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and control matrix [0 1]7 is also completely controllable, since the control-
lability matrix is

0 1
[1 1] (5.4)

which is of full rank. However, the subsystem &, is not controllable! Moreover,
no unitary transformation can make &, controllable (Exercise 5.6). Therefore, in
general, a nonsingular (non-unitary) transformation is necessary. In this
example, the transformation

G=

0
0
1 (5.5)
0

-0 OO

1 1
01
00
00

can do the job. We leave the detail as an exercise (Exercise 5.7).

We also point out that the dimensions n,, ..., n, of the subsystems in the
above theorem are independent of any nonsingular transformation (Exercise
5.8). For unitary transformations, this is clear. In fact, if W is any unitary n x n
matrix and A = WTAW, B= WTB, and C = CW, then the dimensions of the
subspaces sp M ;;(\sp N%;, sp M5, and sp N%; of R" are clearly n,, n, + n,,
and n, + n,, respectively. In addition, we note that the vectors f;, f,, f; in the
state-space descriptions of the subsystems do not change the controllability and
observability properties as discussed in Remark 5.3, and the transfer matrix D
does not play any role in this discussion (Remark 5.2). For convenience D was
assumed to be the zero matrix in the above theorem. It is also worth mentioning
that the nonsingular transformation U does not change the controllability and
observability properties of the original state-space descriptions as observed in
Remark 5.1.

To verify the structure of the matrix A in the statement of Theorem 5.1, note
that for 1 <j <n;, Ae;e V', by Lemma 5.1. Hence, comparing with the ex-
pression (5.2) in Lemma 5.2, we see that g;; =Ofori=n, +1,...,n(1<j< n;).
This shows that the first n, columns of 4 have the block structure described in
the theorem. To verify the structure of the second column block, we consider
n; +1<j < n, +n, and note that de;isinsp M =V, @ V, from Lemma 5.1,
so that again comparing with expression (5.2), we see that 4;; = 0 for i=n, +n,
+1,...,nForn, +n,+1<j<n; +n,+n;, e;is in V; and hence is ortho-
gonaltoanyyin V,® V, =sp NZ,. Butsince sp N7, is an invariant subspace of
R" under A", we see that A7y is also orthogonal to e;, so that (de;)"y =el ATy
=0, and Ae; is in the orthogonal complement of sp N7 ,. This shows that Ae; is
in V,; @ V3, which yields the zero structure of the third column block of A4.

The zero structures of B and € again follow from orthogonality. Indeed, since
the columns of B are in V, @ V,, they are orthogonal to ¥, and ¥, so that the
identity B= UTB=[e, . . . e,]7 Byields the described structure of B. Also, since
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the columns of CTare in ¥, ® V, and C = CU, the first and third column blocks
of C must be zero. To verify the complete controllability and observability of the
subsystem %, in Theorem 5.1, one simply checks that the controllability and
observability matrices are of full rank. In fact, it can also be shown that the
combined &, and &, subsystem is completely controllable and the combined &,
and %, subsystem is observable (Exercise 5.9).

5.3 Transfer Functions

Our next goal is to relate the study of state-space descriptions to that of the
transfer functions which constitute the main tool in classical control theory.
Recall that if f{(t) is a vector- (or matrix-) valued function defined on the time
interval that extends from 0 to + co such that each component (or entry) of f(t) is
a piecewise continuous (or more generally bounded measurable) function with at
most exponential growth, then its Laplace transform is defined by

F(s) = (2f)(s) = Ie-“f(t) dr (5.6)

where, as usual, integration is performed entry-wise. This transformation takes
f(t) from the time domain to the frequency s-domain. The most important
property for our purpose is that it changes an ordinary differential equation into
an algebraic equation via

(Zf") (s) = sF(s)—f(0) (5.7
etc. Similarly, the z-transform maps a vector- (or matrix-) valued infinite
sequence {g,}, k=0,1, ..., to a (perhaps formal) power series defined by

6O=Z{a}= 3 oz ™"

where z is the complex variable. Again the most important property for our
purpose is that it changes a difference equation to an algebraic equation via

Z{gi+1} =2{Z{g} — 9o} > (5.8)

etc. It is important to observe that (5.7 and 8) are completely analogous. Hence, it
is sufficient to consider the continuous-time setting. For convenience, we will
also assume that the initial state is 0. Hence, taking the Laplace transform of each
term in the state-space description

Xx=Ax+ Bu

v=Cx
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where A, B, C are of course constant n x n, n x p and g X n matrices, we have

sX=AX+BU
(5.9)
V=CX
which yields the input-output relationship
V=H()U , (5.10)

where H(s), called the transfer function of the linear system, is defined by
H(s)=C(sI—A)"'B .

Here, it is clear that, at least for large values of s, sI — A is invertible, and its
inverse is an analytic function of s and hence can be continued analytically to the
entire complex s-plane with the exception of at most n poles which are
introduced by the zeros of the nth degree polynomial det(sI — A4). In fact, if we use
the notation

(sI — A)*

to denote the n x n matrix whose (i, j)th entry is (— 1)'*J det /iij(s), where /i,-j(s) is
the (n — 1) x (n— 1) sub-matrix of sI — 4 obtained by deleting the jth row and ith
column, we have

(5.11)

Here, the numerator is a ¢ x p matrix, each of whose entries is a polynomial in s
of degree at most n—1, and the denominator is a (scalar-valued) nth degree
polynomial with leading coefficient 1. It is possible that a zero of the denomi-
nator cancels with a common zero of the numerator.

5.4 Pole-Zero Cancellation of Transfer Functions

An important problem in linear system theory is to obtain a state-space
description of the linear system from its transfer function H(s), so that the state
vector has the lowest dimension. This is called the problem of minimal realization
(Sect. 10.5). To achieve a minimal realization it is important to reduce the
denominator in (5.11) to its lowest degree. This reduction is called pole-zero
cancellation.

Definition 5.1 The transfer function H(s) is said to have no pole-zero cancel-
lation if none of the zeros of the denominator det(s/ — A) in (5.11) disappears by
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all possible cancellations with the numerator, although there might be some
reduction in the orders of these zeros.

It is quite possible to have a pole-zero cancellation as can be seen in the
following example. Consider

A—_21 B= ! C=[0 —1 5.1
[ ) o n

Then the transfer function of the state-space description defined by these
matrices is

s 1 1
CHRS D [ I

(s) = -

l:s+2 —1] (s+3)(s—1)
det
-3 S

Hence, the zero s=1 in the denominator [i.e. the possible “pole” of H(s)] cancels
with the numerator. This pole-zero cancellation makes H(s) analytic on the
right-half complex s-plane as well as on the imaginary axis, which is usually used
as a test for stability (Chap. 6). It will be seen in Chap. 6, however, that this system
is not state-stable although it is input-output stable. Hence, an important
information on instability, namely that s =1 being an eigenvalue of A, is lost.
This does not occur for completely controllable and observable linear systems.

Theorem 5.2 The transfer function H(s) of the state-space description

x=Ax+ Bu
v=Cx

of a time-invariant linear system which is both completely controllable and
observable has no pole-zero cancellation in the expression (5.11).

The proof of this theorem depends on some properties of minimum poly-
nomials, for which we refer the reader to a book on linear algebra; see, for
example, Nering (1963). Recall that the minimum polynomial g,,(s) of the n x n
system matrix A is the lowest degree polynomial with leading coefficient 1, such
that g,,(A4) = 0. Hence, m < n and, in fact, if d(s) is the greatest common divisor,
again with leading coefficient 1, of all the entries of (s — A)*, then

_ det(s] —A)

4m(s) = o) (5.13)

Let us define a matrix F(s) by (sI — A)* = d(s)F(s). Then we have d(s) (sI — A) F(s)
=(sI — A)(sI — A)* =det(sI — A)I, so that

qm(8)] = (sI — A)F(s) , (5.14)
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and taking the determinant of both sides yields
qr(s)=det(sI — A) det F(s) .

This shows the important property that the zeros of the characteristic poly-
nomial det(sI — A) are also the zeros of the minimum polynomial q,,(s). On the
other hand, we have

C(sI—A)*B _d(s)CF(s)B _ CF(s)B
det(sI—A)  d(S)gmls)  gm(d)

by using (5.11, 13), and the definition of F(s). Hence, to show that there is no pole-
zero cancellation, it is sufficient to show that if g,,,(s*) = 0 then CF(s*)Bis not the
ZEero q X p matrix.

To prove this assertion, we need more information on F(s). Write

H(s)=

gus)=s"—a;s" " '— ... —a

m

It can be shown (Exercise 5.12) that
G (S) — gm(t) = (s —1) Z (F—a, "1 — . —a)sm kL (5.15

Hence, replacing s and t by the matrices sI and A, respectively, and noting that
q..(A)=0, we have

m—1
Gu() =qu(sD)=(sI—A4) Y (A*—a; A" ' — ... —aql)s"* 1.
K=o
This together with (5.14) gives
F(s)= Z (A¥—a, A1 — . —g Ds" L, (5.16)

As a consequence of (5.16), we observe that F(s) commutes with any power
of 4, ie.

F(s)A*= A*F(s), k=1,2,... . (5.17)

Assume, on the contrary, that both g,,(s*) = 0 and CF (s*)B = 0. Then by (5.14),
we have

(s*1 — A)F(s*) = q,u(s*)] =

so that AF (s*) = s* F(s*),and A2 F(s*) = s* AF(s*) = s*2 F (s*), etc. Hence, from
(5.17) we have

A¥F(s*) = F(s*)A* = s**F(s*), k=1,2,... . (5.18)
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One consequence is that
CA*F(s*)B=s**[CF(s*)B]=0, k=0,1,...,

or N¢4(F(s*)B)=0, where N, is the observability matrix. Since the linear
system is observable, the column rank of N, is full, and this implies that
F(s*)B=0. We can now apply (5.17) to obtain

F(s*)A*B=A*F(s*)B=0, k=0,1,...,

or F(s*)M ,5 = 0, where M 45 is the controllability matrix. Since the linear system
is completely controllable, the rank of M 4 is full, so that F(s*)=0. If s* =0,
then (5.16) gives

A"t g A" - —a,_,I=0

which contradicts that the minimum polynomial g,(s) is of degree m, and if
s*#0, then again by (5.16),

p(A)=0  where

m—1

p(s) = kZ'o (*—a, s 1 — ... —qg)s*mk!

is a polynomial of degree m— 1, and we also arrive at the same contradiction.
This completes the proof of the theorem.

Exercises

5.1 Give some examples to convince yourself of the statement made in
Remark 5.1. Then prove that this statement holds in general.

5.2 If a state-space description of a continuous-time linear system with zero
transfer matrix is completely controllable, show that the same description
with a nonzero transfer matrix D(t) is also completely controllable. Repeat
the same problem for observability.

5.3 Show that an additional free vector f(t) in (5.1) does not change the
controllability and observability of the linear system.

(Hint: Return to the definitions).

5.4 Formulate and justify Remarks1, 2, and 3 for discrete-time linear systems.

5.5 Complete the proof of Lemma 5.1 by showing that V, is an invariant
subspace of R” under 47.

5.6 In the example described by (5.3), show that no unitary transformation W
can make .%, controllable without changing the desired decomposed form.

5.7 Verify: that the subsystem &, in the example described by (5.3) is
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5.9

5.10
5.11

5.12
5.13

S. Time-Invariant Linear Systems

completely controllable and observable; that the combined subsystem of
& and ¥, is completely controllable; that the combined subsystem %,
and ¥, is observable; that the subsystem &, is observable; but that the
subsystem %, is not controllable. Also, verify that if the transformation
G~ ! is used, where G is given by (5.5), then the transformed subsystem %,
is now completely controllable while %, , %5, and &, remain unchanged.
Prove that the dimensions n,,...,n, of the subsystems in the de-
composed system (Theorem 5.1) are invariant under nonsingular
transformations.

Verify that the combined subsystem &, and &, in Theorem 5.1 is
completely controllable, and the combined subsystem %, and %, is
observable. Complete the proof of Theorem 5.1 by verifying that the
appropriate controllability and observability matrices are of full rank.
Verify the z-transform property (5.8) and generalize to Z {g, . ;}.

Verify that there is a pole-zero cancellation in the example (5.12), and
determine the ranks of the controllability and observability matrices.
Derive the formula given by (5.15).

(a) If

I 0 1
A=|:O ]] and B=[]:l,

verify that the system is not controllable while the two subsystems &, and
&, are completely controllable.
(b) If

1 1 0
Az[o 1] and B:[l]’

verify that the system and its subsystem %, are both completely control-
lable while % is not.



6. Stability

The origin of the notion of stability dates back to the 1893 paper of A. M.
Lyapunov, entitled “Probléme général de la stabilité du mouvement”. In this
chapter:we only discuss the stability of linear systems. As usual, we begin with the
continuous-time setting.

6.1 Free Systems and Equilibrium Points

A system with zero input is called a free system. Hence, a free linear system can be
described by

i=A@)x , (6.1)

where the entries of the n x n system matrix A(t) will be assumed, as usual, to be
continuous functions on an interval J that extends to + co. A position x, in R" is
called an equilibrium point (or state) of the system described by (6.1) if the initial-
value problem

x=A(t)x, t>t,

x(t0)=xe

has the unique solution x(t)=x, for all t > ¢,. This, of course, means that with x,
as the initial state there is absolutely no movement at all. For instance, any
position [a 0]7, where a is arbitrarily chosen, is an equilibrium point of the free
system

. |0 1 x
x= .
00
More generally, if ®(t, t,) denotes the transition matrix of (6.1), then x, is an
equilibrium point if and only if

[ —®(t, t0) ] x. =0

for all t >t,. Hence, if the matrix I —®(t, t,) is nonsingular for some ¢ >t,, then
the only equilibrium point is the origin.
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no resistance or friction

unstable stable and stable but not
equilibrium asymptotically stable asymptotically stable
equilibrium equilibrium
Fig. 6.1

Itis interesting to study how the state vector behaves if the initial state is near
but not at an equilibrium point. A ball sitting still on top of a hill will roll away
when it is disturbed, but if it is slightly perturbed while sitting on the bottom of a
valley, it will eventually move back to the original equilibrium position.
However, if there is no resistance, the perturbed ball on the bottom of a
frictionless valley just oscillates back and forth, but never stays at the bottom.
These phenomena illustrate the notion of unstable equilibrium, asymptotically
stable equilibrium, and stable equilibrium in the sense of Lyapunov, respectively
(Fig. 6.1).

6.2 State-Stability of Continuous-Time Linear Systems

In this section, we introduce three related but different types of state-stability.

Definition 6.1 A free linear system described by (6.1) is said to be stable (in the
sense of Lyapunov) about an equilibrium point x, (or equivalently, x, is a stable
equilibrium point of the system) if for any ¢>0, there exists a >0, such that
|x(t) = x| < ¢ for all sufficiently large t whenever |x(t,)= x,|, < (cf. Exercise 2.6
for definition of the “length” | |, and Remark 6.3 below).

Another terminology for stablity in the sense of Lyapunov is state-stability,
since it describes the stability of the state vector.

Definition 6.2 A free linear system is said to be unstable about an equilibrium
point x, (or x, is an unstable equilibrium point of the system) if it is not stable
about x; that is, there exists an &, > 0 such that for every d >0, some initial state
x(to) and a sequence t,— + oo can be chosen to satisfy |x(ty)—x.|, <J and
|x(t,) — x|, = ¢, for all k.

Definition 6.3 A free linear system is said to be asymptotically stable about an
equilibrium point x, (or x, is an asymptotically stable equilibrium point of the
system) if there exists a §>0 such that |x(¢)—x,|,—~0 as t— + co whenever
|x(t0) —x.|2 <9.

This stability is also called asymptotic state-stability.
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Clearly, an asymptotically stable equilibrium point is also a stable equilib-
rium point in the sense of Lyapunov, but the converse is false as illustrated in the
frictionless valley example. More precisely, the free linear system

[ o 1],
=l 21 0

has x, =0 as an equilibrium point, and if x(t,)=[6, 6,1 where §3+ 6% >0, then
it can be seen that

x(t)=[6, cos(t—to)+5,8in(t—ty) —3&,sin(t—ty)+0,cos(t—1ty)]"

for all i>t, so that |x(t)—x.|,=|x(t)|,=|x(t,)|, for all ¢t (and we could have
chosen 6 to be the given &), but that x(t) clearly does not converge to 0.

Remark 6.1 Using the translation y=x—x, we may (and will) assume that the
equilibrium point is 0. The system description is unchanged under this trans-
lation since

. d
y:E(x_(D(t, tO)xe)

. d
=x—E(I)(t, to)X,

=A@t)x—A@Q)D(t, ty)x.
=A(t)x—A(t)x,
=A@ (x—x.)=A(t)y
which is the same equation (6.1) that x satisfies.

Remark 6.2 The restriction of |x(fy)|,<d in the definition of asymptotic
stability can be omitted for free linear systems, since dx(t) =®(¢, t,) [6x(t,)] and
|x(t)],—0 if and only if é|x(t)|,—0 as t— + co.

Remark 6.3 Ifx=[x,...x,]7, then

lx[,=/x}+ ... +x2

is the actual length of x in R". This generalizes to | F|, of a matrix F=[ f;] by
defining

1/2
|F|2:<Z 12,> .
LJ

For convenience, we will sometimes drop the subscript 2, so that |x|=|x|, and
|F|=|F,.
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Theorem 6.1 Let ®(t, t,) be the transition matrix of the free linear system
described by (6.1). This system is stable about O if and only if there exists some
positive constant C, depending only on t,, such that

|®(1, 80)I<C (6.2)
for all t>t,. It is asymptotically stable about 0 if and only if
|D(t, £)|—0 6.3)

as t— 4+ co.

Recall that x(t)=®(t, ty)x(t,) since we have zero control function u. By
Schwarz’s inequality, we obtain

[x ()| <|D(2, o) x(to)] (6.4)

(Exercise 6.4). Hence, if (6.2) is satisfied, then for a given £>0, we can choose
0=¢/C, so that the system is stable about 0. Furthermore, if (6.3) is satisfied, then
the above inequality gives |x(t)|—0, so that the system is asymptotically stable
about 0.

To see the converse of the first statement, we assume that the system is
stable about 0 but, on the contrary, (6.2) is not satisfied for any C. That is, there
is some entry ¢, j, (¢, to) in (t, t,), 1 <iy, jo <n, that is unbounded, as t - + co.
Let x(to)=[0...010...0]7, 1 being placed in the j,th entry. Then
lx(6)|=1D(t, to)x(to)| =i, j, (£, to)| which is unbounded (cf. Remark 6.2 for
dropping the requirement |x(t,)| <J), contradicting the stability assumption.
The proof of the converse of the second statement is similar (Exercise 6.7). This
completes the proof of the theorem.

Let us consider time-invariant systems for the time being and denote by

/lj= ri+is;, (rj’, s;real)j=1, ..., k, the eigenvalues of the n x n constant matrix A
with multiplicities m,, . . ., m;, respectively (m;+ ... +m,=n), so arranged
that r,>r,> ... =r,. Now if ®(t, 0) is the transition matrix with initial time

to =0, its Laplace transform is

(,Sftl))(s)=< i —A’) 2

=0 j!

so that
x 1
(sI—A) (LD)(s Z —

. o0
A 'Zo

Aiti=1 | or

M
-~

(LD)(s)=(sI—A)"!

_ (sI—A)*
det(s] — A)
_(sI—A)*

k

1 6=4
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Since each entry in (s/ — A)* is a polynomial of degree <n and the denominator
is of degree =n, we can use partial fractions and obtain

where Pj; are n x n constant matrices (with complex entries). Taking the inverse
Laplace transformation, we have

k mi—1 4
o1 0)=e1=3 3 Lebip,

jllOl'

Hence, the transition matrix corresponding to a given constant matrix 4 and
with initial time t, has the following expression:

k mi—1 —t 1
ﬂe%"-’wpu : (6.5)

(1, 1g) =e M =
=1 1=0 I

This formulation of d(t, t,) is very useful in the study of stability. For instance, if
we write ry= ... =r,>r,. > ... 2r, (p=1) and set r=r,, then (6.5) yields

mj— 1 —t 1
1O, ty)| =€t~ Z gisit=to) Z 0) P,+o(1) (6.6)

where o(1) (which reads “small ‘oh’ one™) is a so-called Landau notation that
denotes the error term that tends to 0 as t— + o0. The following result is a simple
consequence of this estimate and Theorem 6.1 (Exercises 6.8 and 10).

Theorem 6.2 Let the time-invariant system matrix A in (6.1) be an n x n matrix
with eigenvalues A;. Then the corresponding continuous-time free linear system
is asymptotically stable about 0 if and only if Re {A;} <O for all j. It is stable about
0 in the sense of Lyapunov if and only if Re{A;} <0 for all j, and for each j with
Re{4;} =0, 4; is a simple eigenvalue of A.

Remark 6.4 The result in the above theorem does not apply to time-varying
systems. For example, if

—4 3 ¥
A =
(t [ s g ],

the eigenvalues of A(t) are A= —1 and — 3 (independent of t) which of course
have negative real parts. However, with the initial state x(0)=[6 6]7, § >0, the
state vector becomes

| Bem*—2e77)0
x(t)_[ (2¢'—e¥)s ]
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so that |x(t)] > o0 as t— + oo for any 6 >0, no matter how small. That is, this
system is even unstable about 0.

Remark 6.5 Let the time-invariant system described in Theorem 6.2 be
asymptotically stable. Then all the eigenvalues 4; of the system matrix 4 have
negative real parts. Choose any p that satisfies

0<p<min(—Re{4;}) .
Then the estimate (6.6) gives
D(t, to)| <e™ Pt

for all large values of ¢ (Exercise 6.9). In particular, if x is the state vector with
initial state x(t,), then x satisfies

lx ()| < |x(to)[e P71 (6.7)

This shows that not only does |x(t)| tend to 0, it tends to O exponentially fast.

Time-varying systems, however, do not necessarily have this property as can
be seen from the example x(f)= —t~ ! x(t) where t>t,>0, since the solution of
this initial-value problem is

x(t)=x(to) (tot )

which tends to zero as t— + oo, but certainly does not tend to zero exponentially
fast as (6.7). So for time-varying systems, we need the following finer stability
classification.

Definition 6.4 A free linear system described by (6.1) is said to be exponentially
stable about the equilibrium point 0, if there exists a positive constant p such that
the state vector x(t) satisfies the inequality (6.7) for all sufficiently large values of t
and any initial state x(t,). (Note that in view of Remark 6.2, we have no longer
required |x(ty)]| <3.)

The following result characterizes all such free linear systems.

Theorem 6.3 Let |A(t)| <My<oo for all t>t,. Then the corresponding free
linear system is exponentially stable about the equilibrium point O if and only if
there exists a positive constant M , such that the transition matrix ®(t, s) of A with
initial time s>t satisfies

1

[l®(z, 5)ldt<M, < (6.8)

s
forall t>s>t,.

One direction of this theorem is intuitively clear since state vectors and
the transition matrix are intimately related. In fact, the jth column ¢;= ¢;(t, s) of
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®(t, 5)is the state vector x(¢) with initial state x(s)=[0...0 1 0...0]%, 1 being
placed at the jth component. Hence, if the system is exponentially stable about 0,
then p >0 exists such that

|@;(t, 5)|<e Pt

for all sufficiently large values of t, and j=1, ..., n. This gives
t t t
n 1/2 nl/Z
jl@(f, s)ldt= J‘{ Y |¢;(r, s)IZ} dr<ni/? J‘e”"““”dr <—
i=1 p

forall t >s>t,. To prove the converse, assume that ®(t, s) satisfies (6.8). Our first
observation is that |®(t, )| is uniformly bounded for all ¢ and s with ¢ > s. Indeed,
if t>s, we have

t
|®(t, s)—1 |=’ JiQ(w, sydw
ow

iA(w)(I)(w, s) dwl
<||A(w)D(w, s)| dw

<) AW)| |D(w, s)|[dw<MM, ,

R Ll D

where Schwarz’s inequality and the inequality in Exercise 6.6 have been used,
and hence an application of the triangle inequality (Exercise 6.5) gives

|, ) <|I| + MM, =n"2+ M M:=M, ,

say. Next, by using a property of the transition matrix, we have, for t>s>1,,

(t—s)| D(2, s)|=f[|(1>(t, sy|dw

s

|D(z, w)D(w, s)|dw

<({|®D(t, w)| |P(w, s)|dw

h— ) -

t
<M, [|Ow, s)ldw<M, M, .
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Hence, whenever (t —s)>2M; M,, we have
|G, )| <4 . (6.9)

Now, starting at t,, if t>t, we can choose the largest nonnegative integer k
satisfying ¢, +k(2M; M,)<t so that k>[(t—t,)/2M,M,]—1, and using the
notation

te=to+2kM, M, ,
we obtain
[D(t, to)|=1D(t, tr— )Pty — 15 ti—z) . . . D(t4, Lo)]
<|D(t, t - N DPx— 15 ti=2)] - - . [D(t4, to)l
<27k« et

by defining r=(In 2)/2M, M,). Here, we have used Schwarz’s inequality and
inequality (6.9) (k— 1) and k times, respectively, and of course, the last inequality
follows from the definition of k. Hence, again by using Schwarz’s inequaltiy, we
obtain

(O =1D(t, £0)x(to)| <D, £o)] 1x(to)| <2777 x(t,)]

which gives (6.7) for all large values of ¢ by choosing any p with 0<p <r. This
completes the proof of the theorem.

6.3 State-Stability of Discrete-Time Linear Systems

We now turn to the study of the discrete-time setting. To do so, we need a result
from linear algebra. Recall that any n x n constant matrix A is similar to a Jordan
canonical form J; that is A= PJP ™! for some nonsingular matrix P. The reader
probably remembers that J has at most two nonzero diagonals; namely, the main
diagonal that consists of all eigenvalues of A listed according to their multi-
plicities, and the one above the main diagonal that consists of only 0 or 1. For our
purpose in studying the stability of discrete-time systems, we have to be more
precise. Let 4,, . . ., 4; be the distinct eigenvalues of A4, and let the characteristic
and minimum polynomials of 4 be

det(sI—A)=(s—A)" ... (s—A)" and
q)=(—4)" ... (s—4)™,

respectively, wheren, + ... +m=nandm;<n;,i=1, ..., Foreachi,let s, be
the dimension of the vector space spanned by all eigenvectors corresponding to
the eigenvalue 4;. s; is called the geometric multiplicity of A; and n; is called the
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algebraic multiplicity of 4. It is known that s; <n, also. To understand the Jordan
canonical form J, it is best to imagine J as a block diagonal matrix. It turns out
that the number of diagonal blocks that contain A; on their main diagonals is
equal to s;. In fact, we can write

By (i)
B, (1)

By (%)

B (%)

where the blocks that are not listed are zero blocks and

A; 1
Bl()“j): . 1 s
Y
i=1,...,s;andj=1, ..., ] and again the entries that are not listed are zeros. In

addition, foreach j=1, . . ., [, the “leading block” B, (4;) is an m; x m; submatrix
while the orders of the other blocks B;(4;), i> 1, are less than or equal to m;, such
that the sum of the orders of all B,(4)), . . . , B,,(4;)is exactly n;. It is also known
that with the exception of a permutation of the diagonal blocks, the Jordan
canonical form J of A4 is unique.

One important consequence is that if m; = 1, then the n; x n; submatrix A; of J,
consisting of the totality of all blocks that contain the eigenvalue 4,, is a diagonal
submatrix; that is,

A 0--eeen 0
[Blul). 0.
By (&) C. 0
(o 0 -4

Another important consequence is that if m;> 2, then there is at least a 1 on the
(i, i+1) diagonal of the corresponding n; x n; submatrix A. More precisely,

'lj 1 0 ..... 0
B,(4; g
I L T
'st(ij) . . 'bnj“z
O vvvenn.. 0 A

where by, ..., b, _,areOor 1.
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We can now discuss the problem of stability for discrete-time linear systems.
Let A be an n x n constant matrix and consider the time-invariant free linear
system

Xy =Ax, . (6.12)

Without loss of generality, we assume in the following discussion that the initial
time is k=0 so that the initial state is x,.

Definition 6.5 A discrete-time free linear system described by (6.12) is said to be
stable (in the sense of Lyapunov) about 0 if for any ¢ >0, there exists a d >0 such
that |x,| <e for all sufficiently large values of k whenever |x,| <4. It is said to be
asymptotically stable about 0, if |x;|]—>0 as k— o0, or equivalently,

lim |A*xy|=0 (6.13)

k- 0

for all x, in R". (Note that in view of Remark 6.2, we have dropped the
requirement |x,| <& in the definition of asymptotic stability about 0.)

Again asymptotic stability is a stronger notion than stability in the sense of
Lyapunov. In fact we have the following characterization.

Theorem 6.4 Let A;,j=1, ..., be the distinct eigenvalues of the n x n matrix
A. Then the corresponding discrete-time free linear system (6.12) is asymptotically
stable about 0 if and only if |A;|<1,j=1, ..., . It is stable about O in the sense of
Lyapunov if and only if |A;] < 1 for all j, and for each j with |A;| =1, A; is a simple root
of the minimum polynomial q(s) of A.

Our proof of this theorem relies on the Jordan canonical form J of A as
discussed early. We do not, however, require the fine structure of the diagonal
blocks B;(4;) but only the weaker diagonal blocks 4; as given in (6.10, 11). Let us

arrange the eigenvalues 4,, ..., 4, in such a way that m;= ... =m,=1 and
Myi1s - .., m>1 Then we have from (6.10, 11).
- W ) —
P~'AP=J= b Apes
L o A

where, for j=p+1, ..., 1, A;is an n; x n; submatrix (n;>m;>2) given by (6.11).
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Hence, taking the kth power, we have

A1
-
P-lAxp=Jk= Ayl 4t (6.14)
p+1.
ar
with
B S
J J
L I
Ak=| o T (6.15)
0 .0 2k

where each * denotes a term whose magnitude is bounded by
k... (k—i+1)AA7L 1<i<ni—1, j=p+1,...,1.

First we note that if all |Aj<1, then |[x,|=|A"xy|=|PJ*P ™ x,|
<|P| |P"'x4||J*| which tends to 0, since each entry of J* tends to 0 as k-
(Exercise 6.8). Conversely, if (6.13) holds, then we must also have |4;| <1 for all j,
since by choosing

xXo=P[10...0 10...0...10...0]7
~—_———— — | S —
n n, n

s

it follows from (6.14) and (6.15) that
(414 oo + APV = TP x| =P~ A x| < P71 A x|

To establish the second statement in Theorem 6.4, we first assume that if |4}
=1 then m; is 1, so that 1 <j<p, and consequently |4;|<1 for i=p+1,..., 1L
Hence, for each x,, writing

Xo=P[y1 - Vit ... 4ny Ymt...+mp+1--- Yl >
we have
x| =1A4%xo|=|PJ*P™ x| <|P| [J*P ™ x|
=IP{(yi+ - 4yis L an) 20},
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where the o(1) term is a contribution from the eigenvalues 4;, i>p+1, and this
term tends to zero since |4;| < 1 (Exercise 6.8). Hence, for every given ¢ >0, we can
find a §>0 to control the term y$+ ... +y7 ., ., ,so that|x,| <& implies
|x,| <& for all large values of k. Conversely, if |4;| =1 but 4;is not a simple root of
the minimum polynomial of 4, i.e. m;>2, then by choosing

xo=P[0..... 0 06 0...0]",
n + B

we have, from (6.15),
|xk|=|Akx0|=|PJkP”1x0|

=IP[0..... 0 kik"ts aks 0...0]7]

=5|:|k'15¢1|2< Zl Pr2,n1+ +n,._,+l)
n 1/2
B (5 e ) |

n 1/2
2
>k6< ler,tll+.A.+nj,+l> =0,
r=

as k—oo for each 6>0, where P=[p,], because the (n,+ ... +n;_;+1)st
column of P cannot be identically zero, P being nonsingular. Since § >0 is
arbitrary, the system is not stable in the sense of Lyapunov about 0. This
completes the proof of the theorem.

Remark 6.6 If the system (6.12) is asymptotically stable about 0, we have
actually proved that |x,| decays to zero exponentially fast. There is another way
to see this behavior. Consider A as a transformation from R" into R". Then we
may consider the operator norm of this transformation defined by

lAll =sup {|4x|:]x] =1}

(which really means the maximum of the lengths of the vectors Ax among all unit
vectors x in R"). There is an important result that relates || 4*|| to the magnitudes
of the eigenvalues of A. If ;s are the eigenvalues of A, this result, called the
Spectral Radius Theorem, says that the sequence {||4*||'/*} converges as k— o0,
and

lim || A*|"*=max |4, .

k— oo
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Hence, if all |4;| <1, then for any p with |4;/<p <1, we have
4|l < p*
for all large values of k, so that (Exercise 6.13)
b =140 < 1A% 1xo] < |x0 [p* . (6.16)

Inequality (6.16) is analogous to inequality (6.7) for continuous-time systems.
It is, therefore, very natural to consider discrete-time time-varying free linear
systems and to characterize the ones that are “exponentially stable” about 0 (i.e.,
satisfying (6.16)). We leave this as an exercise to the reader (Exercise 6.15).

6.4 Input-Output Stability of Continuous-Time Linear Systems

We next consider input-output stability of a non-free linear system. It will be
interesting to see that although there is a very tight relationship between
asymptotic state-stability (i.e. asymptotic stability of a free system) and the input-
output stability that we are going to discuss, there does exist an input-output
stable linear system that is not state-stable, as mentioned in Sect. 5.4. The main
reason is a pole-zero cancellation (Theorem 5.2 and the example following
Theorem 6.8).

We will first consider the continuous-time state-space description. If we have
an input function u(t) which is bounded for all t > ¢, one would certainly hope to
have a bounded output response v(t). This is essentially the definition of input-
output stability (or bounded-input bounded-output stability). Recall that the
output v not only depends on the state vector x, but sometimes also depends on
the input u directly, as described by the transfer matrix D(z) in (1.7). Since u is
supposed to be bounded and an unbounded transfer matrix is unlikely and very
undesirable, the term D(t)u is usually discarded in the discussion of input-output
stability. That is, we will consider the state-space description

i=A()x+B(t)u

v=C(t)x . (6.17)

Definition 6.6 A linear system with the state-space description (6.17) is said to
be input-output stable about an equilibrium point x, (or I — O stable, for short), if
for any given positive constant M |, there exists a positive constant M ,, such that
whenever x(ty)=x, and |u(t)| < M, for all t > t,, we have |v(t)| < M, for all t > t,,.

In view of Remark 6.1, we will always assume the equilibrium point x, to be 0.
Hence, the input-output relation can be expressed with the aid of the transition
matrix by

v(t)=jr' C(t)®(t, s) B(s)u(s)ds , (6.18)
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see (2.4). This relationship describes the I—O stability completely. For con-
venience, we introduce the notation

h*(t, s)= C(t)®(t, s)B(s) 6.19)

so that (6.18) becomes
v(t)= [ h*(t, s)u(s)ds . (6.20)

Theorem 6.5 A linear system described by (6.17) is I — O stable if and only if
there exists a positive constant M(ty) such that h*(t, s) satisfies

[ 1h*(, 5)] ds <M (to) 6.21)

for all t>t,.

One direction is clear. If |u(t)| <M, for all t>t, and (6.21) is satisfied, then
by using the inequality in Exercise 6.6 and Schwarz’s inequality, we have,
from (6.20),

IMMSjMﬂLSﬂ@Ms

SjMﬂuﬂHﬂﬂws

ty
<M, | |h*(t, s)|lds<M M (t,) .
to
To prove the converse, we assume, on the contrary, that (6.21) is not satisfied
but |u(t)| < M, implies |v(t)| <M, for all t >t,. Let hy(t, s) be the (i, j)th entry of
the g x p matrix h*(t, x). Since (6.21) is not satisfied for each (arbitrarily large)
positive constant N we can choose t, >t, such that

151
§ Ih*(t,,8)|ds>pgN .
to

Hence, we have
ty

p 4 1/2
PqN<j [ '21 '21 hi(ty, S)|2:| ds
=1i=

to
t

M

q
=\ .21 |hij(t17 s)| ds
j=1i=

1
to

t
Squ |hop(ty, )| ds
to
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which implies
1
§ Ihag(ty, )| ds>N (6.22)
to

for some (o, f), where 1<a<q and 1<f<p. Now choose u=[0...0
sgn hyg(ty, s) 0. .. 0]", where sgn h,(t,, s) is placed at the fth component of u
and denotes the function which is 1 if h,4(t,, s) is positive, 0 if h,4(t,, 5) is 0, and
—1if h,y(ty, s) is negative (usually called the signum function). Then (6.20 and 22)
give

lo(t,)? = :fh*(tl, Su(s)ds

[ty 72 t 2
= L'{ lhap(ty, s)| ds +i;a |: 'j; hig(ty, s)sgn hyy(t, S)ds]

[ 1, T2
[ lhy(ty, 9)lds | >N? .
| o

v

That N was arbitrarily chosen contradicts the assumption |v(t)| <M, for all
t>ty. This completes the proof of the theorem.

Since the g x p matrix h*(t, s) defined in (6.19) plays a very important role in
characterizing I — O stability, it is worth investigating this function in the time-
invariant setting.

Let A, B, C in (6.17) be constant n x n, n X p, and g x n matrices. Then (6.19)
becomes

h*(t, s)=Ce"~94B .

Note that the right-hand side can be considered as a function of one variable
(¢ —s). Hence, we can introduce the g x p matrix-valued function

h(t)=Ce"B , (6.23)

so that h*(t, s)=h(t—s). For convenience, we consider t,>0 and for any input
u(t), we define u(t) to be 0 for t <t,. Then (6.20) can be written as

o(t)= § he =) ds = h(t—3) ) ds (624)

=(h*u)(®) ,
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called the convolution of h with u. Since the Laplace transform of a convolution is
the product of the Laplace transforms, we can conclude that

C(sl—-A)*B
Lh)B)=H(@S)=———— 6.25
(L NO=HE=g " (62)
is the transfer function of the system [cf. (5.11)]; or equivalently, h(¢) in (6.23) is the
inverse Laplace transform of the transform function H(s). That is, h(t) is the
impulse response of the time-invariant linear system (6.17).

Theorem 6.6 The impulse response h(t) satisfies

[lh—9lds= | h(@)lde<M (to)<oo
1]

to

for all t >t if and only if all the poles of the transfer function H(s) lie on the left
(open) half s-complex plane.

In view of Theorem 6.5, an equivalent statement of the above theorem is the
following.

Theorem 6.7 A time-invariant linear system described by (6.17) is I — O stable if
and only if all the poles of its transfer function lie on the left (open) half complex
plane.

It is sufficient to prove Theorem 6.6. Imitating the argument that yields (6.5),
we have

h(t)= ;

nj—1 t’

—ehtQ,; (6.26)
i=o ! !
where 4,,..., 4, are the poles of H(s) with multiplicities n,,..., n,
respectively, and Q,; are constant g x p matrices (Exercise 6.16). The theorem
then follows from standard estimates (Exercise 6.17).

Note that the poles of the transfer function H(s) are eigenvalues of A, but
since there is a possibility of pole-zero cancellation of H(s) in the expression
(6.25), the converse does not hold. However, if the linear system is both
completely controllable and observable, Theorem 5.2 tells us that the set of poles
of H(s) is the same as the collection of eigenvalues of A. Hence, as a consequence
of Theorems 6.2 and 7, we immediately have the following result.

Theorem 6.8 Let the time-invariant system described by (6.17) be completely
controllable and observable. Then the system is I — O stable if and only if the free
linear system x = Ax is asymptotically stable about the equilibrium point 0.

Let us return to the example (5.12) considered in Sect. 5.4; namely,

-2 1 1
[ 0 ] e .
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Recall that the eigenvalues of 4 are 1 and — 3 so that the free linear system is not
(state-) stable, but the only pole of H(s) is —3 so that it is input-output stable.
Indeed, this system is observable but is not controllable. In addition the
transition matrix is

e"‘—l 3e ¥ +et  —e 4
T4 —3e7 34 3¢ e 343!

(which is unbounded), but the impulse response
h(t)=Ce'“B=¢" 3

certainly satisfies
t
[lh(t—s)|ds<% .
0

for all ¢>0.

6.5 Input-Output Stability of Discrete-Time Linear Systems

We next consider discrete-time linear systems. Only time-invariant settings will
be discussed (cf. Exercise 6.18 for time-varying systems). That is, we now study
the state-space description

xk+l=Axk+Buk (627)

U, = ka
As before, we have assumed the transfer matrix D to be 0.

Definition 6.7 A linear system with the state-space description (6.27) is input-
output stable about 0 (or I — O stable, for short), if there exists a positive constant
M such that whenever x,=0 and [, |<1 for k=0, 1, ..., we have |v,|<M for
k=0,1,....

Since x,=0, we have the input-output relationship

-1

e (6.28)

k
U=
1

where the g x p matrices h; are defined by

h;=CA’"'B, j=1,2,..., (6.29)
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which we will call the impulse response sequence of the system. Analogous to
Theorem 6.5, we have the following test for I —O stability (Exercise 6.19).

Theorem 6.9 A discrete-time time-invariant system described by (6.27) is I— 0
stable if and only if there exists a positive constant K such that

k
Y. Ihl<K
ji=1

forall k=1,2,....

The input-output relationship (6.28) can be thought of as the convolution of
the sequence of g x p matrices {h;} and the sequence of p-vectors {u;}. In fact, if
we define

h=0, =0,

for j<0 and /<0, then (6.28) can be written as

0
=) h_u.
I=-w

Now, taking the z-transforms of both sides yields:

V(z)=Z{vk}=ki20 v,z k

_ i<im hk_,u,>z_"

k=0

H()= _2 bz (6.30)

is the transfer function of the discrete-time system. We have already mentioned in
Sect. 5.3 that the z-transform properties are completely analogous to the Laplace
transform properties; hence H(z) has exactly the same formulation as (5.11);
that is

_ C(zI—A)*B
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(Exercise 6.20). Write the g x p matrix h; as

hj=[C}r];|)]

1<il<q,1<m<p, andj=1,2,...,so that
H(z)=|: Y cf,{l’z_j] . (6.32)
=1
It is obvious that
Y |hjl<oo
j=1

if and only if

e

el <o (6.33)

ji=1

for all 1<l<qg and 1 <m<p. Also, since each power series
Y ez (6.34)
ji=1

is a rational function in z ! from (6.31, 32), the inequality (6.33) is satisfied if and
only if the power series (6.34) is an analytic function in (a neighborhood of)
lz7!'|<lor|z|>1,1<I<q,1<m<p,or equivalently, all poles of H(z)in (6.31) lie
in the open unit disk |z| <1 (Exercise 6.21 where w=z"1). An application of
Theorem 6.9 yields the following result.

Theorem 6.10 A discrete-time time-invariant system described by (6.27) is I — O
stable if and only if all the poles of its transfer function H(z) lie in |z]| < 1.

Again, if there is no pole-zero cancellation in (6.31), then the set of poles of
H (z) coincides with the collection of eigenvalues of A. Hence, Theorems 5.2 and
6.4 together yield the following result.

Theorem 6.11 Let the discrete-time time-invariant system described by (6.27) be
completely controllable and observable. Then it isI — O stable if and only if the free
linear system x, , = Ax, is asymptotically stable about 0.

Note that if a discrete-time free linear system is asymptotically stable about 0,
then the corresponding state-space description is I — O stable. However, without
the additional assumption on both complete controllability and observability,
the converse usually does not hold (Exercises 6.22, 23).
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Exercises

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11

Determine all equilibrium points of the free linear system with system
matrix:

0 0 1 00 0
@) A=|0 0 0 |, () A=| 0 0 0 |.
00 0 00 1

Determine all equilibrium points of the time-varying free linear system
with system matrix:

@ A‘”{& g] ®) A(t)=["0t° (1)]

If A(t) is nonsingular for some ¢t > t,,, show that the only equilibrium point
of x=A(t)x is 0.

Let E and F be m x n and n x p matrices. Prove the following Schwarz’s
inequality: |[EF |, < |E|,|F|,. Compare with Exercise 2.8.

Use the triangle inequality in Exercise 2.8 to show:

| |Al,—|B|,|<|A+BI, ,

where A and B are matrices of the same order and p>1.
Let F(t) be an m x n matrix-valued continuous function of t. Show that

b
[ F(t)ydt

b
<[IF@)l,dt .
P a
(Hint: Use Riemann sums and Exercise 2.8).
If a free linear system is asymptotically stable about 0, show that (6.3) must
be satisfied. (This completes the proof of Theorem 6.1).
Let a and b be positive constants. Prove:

(@ lim e *t*=0 and

1= +w
(b) lim m°c"=0 if |¢|<1 .
Show that if |f(f)]<Mexp[—at] ¢® for all t>0 and O<c<a, then
| f(®)| < exp(—ct) for all large values of t.
Prove Theorem 6.2 by using Exercise 6.8 and Theorem 6.1.
Consider the Jordan canonical forms:
A A 1.

Jy= and J,=



6.12

6.13

6.14

6.15
6.16
6.17
6.18
6.19

6.20
6.21

6.22

6.23

Exercises 69

where the unspecified entries are 0. Determine J% and J% and show that
lim,_,  |J%|,=lim,_ . |J%|,=0if |1| < 1;and |J%|, is bounded but |J%|, is
not if |A|=1.

Let

0 -1
4 _[1 0] .
Discuss the stability (in the sense of Lyapunov) about 0 of the free linear
systems:
(a) X=Ax and (b) x,,,=Ax .
Let ||A| be the operator norm of the matrix A. Show the following:
@) I4l<|Al,
(b) If A is an eigenvalue of A, then |A|<|A4] .
© lA+BI<|[A4ll+|B| and [aAd|=]a| [A4] .
Let A be an n x n constant matrix. Show that x, , , = Ax, is stable about 0 if
and only if || 4¥|| is bounded for all k, and is asymptotically stable about 0 if
and only if | 4*| -0 as k— 0.
Define asymptotic and exponential stability for discrete-time time-varying
free linear systems. Give criteria for testing these stabilities.
Derive (6.26) by using partial fractions.
Prove Theorem 6.6 by following the proof of Theorem 6.2. Note, however,
that since we require a uniform bound on the integral, even simple
eigenvalues with zero real part are not permissible.
Discuss I —O stability for discrete-time time-varying linear systems and
formulate an analog of Theorem 6.5.
Prove Theorem 6.9 by imitating the proof of Theorem 6.5.
Following the derivation of (5.11), derive (6.31).
Letf(w)=Z a,w" be a rational function which is analytic at w=0. Prove
that the radius of convergence of the power series is larger than 1 if and
only if £ |a,| < o0.
Give an example of a completely controllable I — O stable time-invariant
linear system which is not asymptotically state-stable (i.e. with a corre-
sponding asymptotically unstable free linear system).
Give an example of an observable I—O stable time-invariant linear
system which is not asymptotically state-stable.
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In the previous discussions on controllability, we have been concerned with the
possibility of bringing a state (vector) from an initial position to an assigned
position, namely the target, in a finite amount of time. In practice, many factors
must be brought into consideration. For instance, the state may not be allowed
to travel outside a certain region and the control (function) has certain limited
capacity. Another important consideration is that there are certain quantities
that we wish to optimize. Usually the quantities to be minimized are time, fuel,
energy, cost, etc. and those to be maximized include speed, efficiency, profit, etc.
The problem under consideration is, therefore, to optimize a quantity, called a
Junctional, which usually depends on the control function, the state vector, and
the time parameter, and at the same time, to satisfy certain constraints, namely:
the control equation of the state-space description, a region the state vector is
confined to, and an admissible collection of functions to which the control
function belongs.

7.1 The Lagrange, Bolza, and Mayer Problems

Let us consider the continuous-time models. As usual, J denotes the time
interval, x=x(t) an n-dimensional state vector, and u=u(t) a p-dimensional
vector-valued control function; but instead of the linear control equation of the
state-space description, let us consider the more general control equation:

x=f(x,u,t) (7.1)

where fis a vector-valued (linear or nonlinear) function defined on Q x J, with
QcR"and J = [t,, o). Let x(t) be confined to a set X —R"for all te J and let U

be a collection of vector-valued functions containing u=[u, . .. u,]". Typically,
we might have:
a;<u(t)<b;, i=1,...,p and teJ or

lu(®)|,<c, teld,

etc. Let us study the optimization of the functional

F(u)=tj1 g(x, u, t)dt (7.2)

to
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where g(x, u, t) is a scalar-valued continuous function defined on X x U x J (i.e.
xeX, ueU, and teJ), and x depends on u according to (7.1). This is usually
called the Lagrange problem. If g does not explicitly depend on ¢, then the domain
of g is simply reduced to X x U, and if g depends only on u directly, its domain of
definition is further reduced to U, etc. Examples of this optimal control problem
are:

i) minimum-energy control problem, with
gw=u"R(t)u ,

where R(t) is a symmetric and non-negative definite matrix;
ii) minimum-fuel control problem, with

gu)=\ul, ;
iii) minimum-time control problem, with

gu)=1

(where t, depends on u).

The functional F(u) in (7.2) to be optimized (minimized or maximized) is called a
cost functional (or penalty functional). Since min { F ()} = —max { — F (u) }, there is
no distinction between the two optimization processes. For this reason, we will
usually discuss the minimization problem. If we add another term to (7.2), say, by
considering the functional

F)=h(t;, x(t))+ | g(x, , 1)dt

we have what is usually called the Bolza problem. By considering the functional
F(uy=h(t, x(t,))

alone, we have what is called the Mayer problem. Of course, in all the above
statements, we must treat the indicated variables ¢,, x(¢,), and x as functions of
the control function # which is restricted to U, and remember that x satisfies (7.1)
with the initial condition x(¢y)=x, such that x € X. It is clear that the Lagrange
and Mayer problems are special cases of the Bolza problem. On the other hand,
by introducing an extra state variable, it can be shown that the Bolza problem
can be changed to the Lagrange problem or the Mayer problem (Exercise 7.2).

It is also interesting to mention that the three problems mentioned here are
special cases of the so-called Pontryagin function:

Fu)=cTx(t,) (1.3)
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where ¢"=[c, . .. ¢,] is a constant row vector. For the Lagrange problem, for
instance, we may introduce a state variable x,,, defined by

xn+l(t)= _[g(x’ u, ‘C)d'f

and consider the new state vector

in R"*1, so that with ¢T=[0...0 1], we have

1

cTy(tl)=Xn+l(t1)= jg(xs u, T)d’f .

to

Of course, the new state vector must satisfy the control equation:

. X f(xs u, t):] 7
y= . = '=f(y’"’t)'
[xn+l} l:g(x’ u, t)

If the terminal time ¢, is free and the terminal state x(t,) is restricted, then
both these quantities depend on the control function #, and the optimal control
problem is, in general, very difficult to solve. In this chapter we do not intend to
solve the most general problem, but rather consider the special case where ¢, is

fixed and no restriction is imposed on x(t, ). The more general problems will be
studied in the next three chapters.

7.2 A Variational Method for Continuous-Time Systems

More precisely, the problem we will study here is to find necessary conditions
that the optimal control function u* and its corresponding optimal trajectory (or
state) x* defined by

F(u*y=min{F(u):ucU} ,
*=f(x* uk, 1), to<t<t,, (7.4)
x*(to)=xo
must satisfy, where F(u) is defined by (7.2) with initial condition x(t,)=x, and
fixed terminal time ¢, such that x=f(x, u, t) for t, <t <t,.
A classical approach to this problem is via the calculus of variations. This

method, however, has its limitations. Since partial derivatives must be taken, we
require the functions f(x, u, t) and g(x, u, t) in (7.2) to be continuous and have
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continuous partial derivatives with respect to all components of x and . In
addition, we require that the admissible set U of control functions is “complete”
in the space of vector-valued continuous functions k(t)e R?, teJ, in the sense
that whenever

If kT(t) qg(t)dt =0

to

for all ge U, then we must have k=0. An example of such a set U is the collection
of all vector-valued piecewise continuous functions # with |u| <1 (Exercise 7.3).
Since we will be taking the “variations” with respect to functions in U, it is also
convenient to assume that every function u in U is interior to U, in the sense that
for each ge U, there exists an g,>0 such that (#+¢en) e U for all |¢| <¢,. Hence, if
I(u,t) is a vector- or scalar-valued function, with continuous first partial
derivatives with respect to the components of u, say I(u, t)=[l, ... 1,]" and
ne U, then the variation of I=1I(u, t) with respect to u along n is defined by

1
0l=6,l=lim B [Hu+en, t)—1lu, t)] (7.5)
=0
ol
ol
where, using the notation #=[u, ... u,]", the m x p matrix dl/du is given by
ol al,
ou, " ou,
e 1.6
“la, o,
ou, " ou,

In particular, if /=11s a scalar-valued function, then 0l/0u is a row-vector which is
usually called the gradient of | with respect to u. We will take the variations of
both the control equation (7.1) and the cost functional (7.2). Let us use the
notation

E=0x .
Then from (7.1) the variation of x becomes (Exercise 7.4):

. of
f=o G+ 1. (.7

This equation can be “solved” by using the state transition equation (2.4). Since
the initial state x(t,)=x, is unchanged as long as the control functions are
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chosen from U, we have &(t,)=0 from the definition (7.5). Hence, if ®(t, s)
denotes the transition matrix of (7.7), we have

t

0
E)= J@(t, T)%(x, u, t)n(r)de . (7.8)

to

On the other hand, taking the variation of the cost functional (7.2) with respect to
u along 7, and keeping in mind that we have assumed a fixed final time ¢,, we
have

d d
8, F ()= j [%(x, u, ) E() + —a%(x, u, t)q(t)] dt . (7.9)

to

To minimize the cost functional F(u), it is necessary that J,,F («) =0 for all nin
U. Hence, putting (7.8) into (7.9), interchanging the integrals, and using the
completeness of U in the space of continuous functions, we arrive at the following
necessary condition for an optimal F(u) (Exercise 7.5).

Ly

d d 9
a—g(x*, u*, 7)+ f 23-i’;(x*, u*, 1) d(z, 1:)55 (x*, u*, 1)dt=0 . (7.10)
u

T

Here, t,<7t<t,, and #* and x* denote an optimal control function and its
corresponding optimal trajectory (state).

In order to be able to work with the equation (7.10), we introduce an
n-dimensional vector-valued function p=p(t), called a costate which is defined,
for any pair (u, x) satisfying (7.1), to be the unique solution of the initial value
problem

ﬁ= - [% (x’ u, T):'Tp—[g_.g;(xa u, T)]T

pt,)=0 . (7.11)

Let p* be the costate corresponding to the optimal pair (u*, x*) and call it an
optimal costate. We also call (7.11) the costate equation. Let ¥(z, t) be its
transition matrix. By Lemma 4.1, we have ¥(z, t)=®7(t, ) where ®(¢, 7) is the
transition matrix of (7.7). Hence, we have

T

p(t)=— J(I)T(t, 1) [2—:3 (x, u, t):|T dt

1
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so that (7.10) becomes

a
g (x*, u*, t)+p*T(t) af

%9 =—(x*, u*, 1)=0, t,<t<t, .
Ju u

That is, if we define the functional
H(x, u, p, t)y=g(x, u, t)+p7f(x, u, t) (7.12)

which is called the Hamiltonian, a quantity that often occurs in classical
mechanics, then a necessary condition for #* and x* to be optimal is that

0H
S X5 un P 0=0, telto, ;] . (7.13)

Let us restate this result.

Theorem 7.1 A necessary condition for the pair (u*, x*) to satisfy
F(w*)=min[ F(u): uecU] ,
X*=f(x* u* 1), to<t<t,, (7.14)
x*(to)=xo

where F(u) is given by (7.2) with initial condition x(t,)=x, and fixed terminal time
such that (u, x) satisfies (1.1) is the existence of a costate p such that the
corresponding Hamiltonian defined by (7.12) satisfies (7.13).

Note that if g is independent of x, then since (7.11) has a unique solution, the
costate p is always zero, so that we have the following result.

Corollary 7.1 A necessary condition for the pair (u*, x*) to satisfy (7.14) where
t
F(u)= jg(u, t)dt
to

such that X=f(x, u, t), x(to)=x, and t, being fixed is that dg(u*, t)/ou=0 for
to<t<t,.

Hence, if g does not depend on the state, as in the case of the minimum-energy
control problem, and the terminal time and state are fixed, determining (#*, x*) is
usually fairly easy. However, in many problems in control theory, the cost
functional depends on the state vector x. Let E, Q(t) and R(t) be symmetric and
nonnegative definite matrices of appropriate dimensions. The so-called linear
regulator problem (with a linear state-space description) involves a cost func-
tional of the form

F(u)=3x"(t,)Ex(t,)+ %tf] [xT (2@ x() +u"(O)R(B)u(t)] dt ; (7.15)
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and the linear servomechanism (again with a linear state-space description) is a
problem of approximating a certain desired trajectory y = y(t) by minimizing the
cost functional

F(u)= %tf {[yO—x®1" QO[O —x(0)] +u" (OR()u(t) } dt (7.16)

(Exercises 7.8 and 9).

7.3 Two Examples

To illustrate the method described in Theorem 7.1, let us consider the one-
dimensional control equation (of a state-space description)

X=x+u,

with the initial state x(0)= 1, and determine the optimal control function u* and
its corresponding trajectory x* when the cost functional to be minimized is

1
Fw=3[[x*()+u?@)]dt .
0
The costate equation is clearly
p=—-p—x
p(1)=0

since dg/0x = x. Therefore, combining this with the original control equation, we
have a so-called “two-point boundary value problem”:

HE B NEHE

p -1 —1{]|p 0
x(0)=1, p(1)=0.

Since the Hamiltonian is
H(x, u, p, )=%(x*+u?)+p(x+u)

and 0H/0u=u+ p, we also have, for optimality,
p*=—u* .

That is, we must solve the two-point boundary value problem:

-l 2

x*0)=1, p*(1)=0 .
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An elementary calculation shows that

R k(e _ \/i—l \/El_ \/§+1 -\/it
d" B=—r (t)—“(3—2\/§)e2ﬁ+1e (3+2\ﬁ)e—2ﬁ+1e
an

1 . 1
x*(t)= - — e\/2’+ _ e~ V2
(3-22)e™?+1 (B+2/2)e 241

provided, of course, that u* e U (Exercise 7.6).
However, a two-dimensional problem is much more complicated. For
instance, consider the initial valued control problem

<o o[

x(0)=[1 0]7

with cost functional
1
)=13{ [xT(t)x(t) + u?(r)] dt
0

to be minimized. The costate equation here is

[ oo
p"[—1 ofP ™
p(1)=0

and

H 0
—(x*a u*’ P*, t)=u* +p*T :0 .
ou 1

Hence, we must solve the two-point boundary value problem:

xO)=[1 0]
p*(1)=[0 01" .

The optimal control function is then

0
_p*T
e
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provided it lies in U. Solutions of two-point boundary value problems are
usually not easy to obtain.

7.4 A Variational Method for Discrete-Time Systems

We next discuss the discrete-time setting. Let the control equation of the state-
space description be

X1 =1 (xi, ., K) (7.17)

with initial state x,,=y,. The problem is to minimize the cost functional

ki
F({uk})=k;k g(xp, w, k) (7.18)

where {x,}€X and {u,} e U. Assuming that f and g are continuous and have
continuous first partial derivatives with respect to all components of x, and u,
and that U contains “delta sequences” of p-vectors with length k;, —k,+1, i.e.
{0,...,0, y,, 0,...,0} where y,#0 for all k=kg, ..., k,, we have the
following result.
Theorem 7.2 A necessary condition for the pair ({uf}, {x¥}) to satisfy
F({uf})=min{F({u}): {u,}eU} ,
xl?-f-l:f(x;:’ ulf’ k) H
x;(ku =y0
where F({u,}) is given by (7.18) with initial state x,, =y, and fixed terminal time

such that ({u}, {x,}) satisfies (7.17), is that there exists a costate sequence {p,}
defined by

of T dg T
D= [a (i, wy, k):| D1t |:5; (xy, uy, k):l
Pr,+1=0

so that the Hamiltonian

H(xy, wy, peiy, kK)=g(xy, uy, k)+PkT+1f(xka u,, k)
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satisfies

H
a_(xlts uf, pii1, k)=0
u

for k=kg, ..., k.

The proof of this theorem is similar to that of Theorem 7.1 (Exercise 7.10).
Exercises

7.1 Consider the following controlled damped harmonic oscillator with mass
1. Let 0 be the angle of the oscillator, a the damping coefficient, and w, the
circular frequency. Then for small values of | 8], the motion of the oscillator
can be approximated by the solution of the differential equation

0(t) + ab(r) + w26(t) = u(t)

with initial angular position and velocity 8(0)=6, and (§(O)=6’1 respect-
ively, where u(t) represents the input control at time t. Suppose that
lu(t)] <1 and we wish to bring the oscillator to rest in a minimum amount
of time. Give a mathematical description of this optimal control problem.

7.2 Prove that the three optimal control problems (i.e., the Lagrange, the
Mayer, and the Bolza problems) are equivalent in the sense that each one
can be reformulated as the others.

7.3 Let U be the collection of all vector-valued piecewise continuous functions
u with |u|, < 1. Prove that if k is continuous and

tf kT()n(t)dt=0

for all ge U, then k(¢)=0.

7.4 Verify the identity (7.7).

7.5 Prove that the necessary condition J, F (u)=0 for all e U is equivalent to
(7.10).

7.6 Supply the detail of the solution of the two-point boundary value problem
in determining the optimal pair (u*, x*) of the one-dimensional example in
Sect. 7.3.

7.7 Consider the one-dimensional optimal linear servomechanism problem of
finding the optimal control u* and the corresponding optimal trajectory
x* that approximates y(t)= 1 such that the pair (u*, x*) satisfies the linear
system X = — x +u with initial condition x(0)=0 by minimizing the cost
functional

F(u)=%j)[(x— )24 u?]dr .
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7.10
7.11
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Prove that the optimal control u* for the linear regulator problem (7.15)
with E =0, R(t) positive definite, and X = A(t)x + B(t)u, x(t,) =x, is a linear
feedback u* = — K(t)x* with K(t)=R ~'(t) BT(t) L(t) where the matrix L(t)
is the solution of the matrix Riccati equation

L(t)y= — L(t)A(t)— AT(t) L(t)+ L(t) B() R~ (t) BT (t) L (1) — Q(2)
L(t,)=0 .

(Hint: Let p=L(t)x in solving the two-point boundary value problem.)
Let R(t) be positive definite. Prove that the optimal control function u* for
the linear servomechanism problem of minimizing

_%f y—0)T0(t)(y —v)+uTR()u] dt ,

where y is given, v =C(t)x, X = A(t)x+ B(t)u and x(t,)=x,, is a linear
feedback u*= — K(t)x+ R~ (t)BT(t)z with K(t)=R~*(t) BT (t)L(t) where
the matrix L(z) is the solution of the matrix Riccati equation

L(t)=— L) A(t)— AT()L(t)+ L() BO)R ™' (1) BT ()) L(t) — CT() (1) C(¢)
L, )=0

and the vector z is the solution of the vector differential equation

t=—[A@t)—B@R™ ()BT () L(1)]"z—CT()Q(t)y
z(t)=0 .

(Hint: Let p=L(t)x—z in solving the two-point boundary value
problem.)

Prove Theorem 7.2.

Let R, be positive definite and Q, be nonnegative definite for all
k=kg, ..., k,. Prove that the optimal control sequence {u}} for the
discrete lmear regulator problem of minimizing

1 &
F({”k})= ik—zk {kaQkxk"‘"kTRk”k}

where x;.;=A4,x,+B,u, and x,,=y, is a linear feedback sequence
uf=—R; "Bl L, x, where the sequence {L,} is the solution of the
matrix difference equations

Ly=A{ L+ Ay~ QB 1 R B{_ L~ A{ L+ B, R B, L,

+QkAk—1
Ly +1=0, k=ky, ..., ko+1.

(Hint: Let p,=L,x,_, in solving the two-point boundary value problem.)
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In the previous chapter, in order to be able to apply classical variational
methods, the cost functional was assumed to be differentiable with respect to
each control coordinate, and to simplify the optimal control problem, we also
assumed that the terminal time was fixed. In this chapter, we will drop these
restrictive and very undesirable assumptions. In order to handle the more
general optimal control problem, we will introduce two commonly used
methods, namely: the method of dynamic programming initiated by Bellman, and
the minimum principle of Pontryagin.

8.1 The Optimality Principle

As usual, we first consider the continuous-time setting. Recall that J denotes the
time interval, X a subset of R” to which the trajectory is confined, and U the
collection of all admissible control functions. We now consider subsets of these
three sets. We require the terminal time to lie in a closed sub-interval J of J, and
the terminal state (or target) to lie in a closed subset X, of X. Of course J
and X, may be singletons, and M =J; x X, will be called the target. For each
(t, y)e J x X, let U(z, y) be the subclass of control functions # in U such that the
corresponding trajectory x = x(t) defined by

x=f(x,u,t)
x(t)=y

lies in X when t1<t<t,, for some terminal time t, =t,(#)eJ; such that the
corresponding terminal state x(¢, ) lies in X . We call U(z, y) the admissible class
of control functions with initial time-space (z, y) (and target M;). Note that
U (7, y) may be an empty collection. The optimal control problem is to determine
an optimal control function #* and its corresponding optimal trajectory
x*=x*(t), t, <t <t¥, where t¥ =t¥(w*)eJ; is called the corresponding (optimal)
terminal time, such that u*eU(t,, x,) and

e

1
[ glx*, u*, t)dt:min{j g(x, u, )dt: ucU(t,, xo)} , 8.1)
to

to
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where both pairs (#*, x*) and (u, x) satisfy
x=f(x,u,t)
x(to)=xo (8.2)

and t; =t, (u) is always assumed to lie in J; and varies with ue U(t,, x,). Note
that if J is a singleton and M;=R", this problem reduces to (7.4).

The method of (continuous-time) dynamical programming depends on the
following so-called “optimality principle”.

Lemma 8.1 Let (u*, x*) be a pair of optimal control and trajectory with initial
time and state t, and x, and terminal time t¥eJ for the optimal control problem
(8.1-2). Then for any 1, to <t <t¥,(w*, x*) is also an optimal control and trajectory
pair with initial time-space (t, x*(1)).

To prove this lemma, we assume, on the contrary, that there is an admissible
control #eU(t, x*(r)) whose corresponding trajectory (t), t<t<t,, where
t, =t (e, lies in X with &(t;)e X, such that

*
151

T
§ g% @ 0)dt< [ glx*, u*, t)dt .
Define the pair (%, £) by:

and

. ur() if to<t<t
ar  if r<t<t,

R x*(t) if to<t<t
=< _ i -~ .
x(t) if T<t<t,

Then we have

§ g(%, &, de=[ g(x*, u*, 0)dt+ | g(F, & 1)dt
to T

to
*
X1

< { glx*, u*, 0)de+ | g(x*, u*, t)dt
to T
54

= [ g(x*, u*, 0)dt .
to

Since (t,, £(t;))=(t;, £(t;)) is in M, we have a contradiction to (8.1). This
completes the proof of the lemma.
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8.2 Continuous-Time Dynamic Programming

An important idea of Bellman is the introduction of the extended real-valued
function

Vi, y)=min{'j! g(x, u, t)dt: uecUf(x, y)} ,

where t, =t,(u), X=f(x,u, t), x(t)=p, x(t)e X for t<t<t,, (¢, x(¢,)) lies in M,
and it is understood that V(t, y)= + oo if U(z, y) is empty. V(z, y) will be called a
value function.

In order to establish the method of dynamic programming, we also need the
following lemma which is also called an optimality principle, but will leave its
proof to the reader (Exercise 8.2).

Lemma 8.2 Let x*(t), t, <t <t¥, be an optimal trajectory for the optimal conrol
problem (8.1, 2). Then for any t and T with ty<t<z1<t¥,

uelU(t, x*(1)) t T

min {_rf g(x, u, s)ds-i—tjl g(x,u, s)ds}

T t
= min {jg(x, u,s)ds+ min | g(% 4, s)ds} :
ucU(t, x*(t)) t uelU(t, x(1)) t

It should be noted that in the last minimization process, the admissible
control function & has the initial time-space (t, x(t)) where x is governed by
ueU (t, x*(t)). Hence, the two minimization processes on the right-hand side
cannot be separated. We again remind the reader that the subscript 1 of ¢, and t;
tells us that ¢, and £; are in the target: t,, ;€J .

The method of continuous-time dynamic programming can be summarized
in the following.

Theorem 8.1 If (u*, x*) exists as a pair of optimal control and trajectory with
initial time-space (ty, x,) and terminal time t¥eJ; for the problem (8.1, 2), then
(u*, x*) must satisfy both

V
%—I:(t, x*)+[g—x (@t x*)]f(x*, u*, f)+g(x* u*, 1)=0, to<r<t}

V(t*, x*(t¥))=0 (8.3)
and

glx*, u*, 1)+ I:g—:(t, x*)]f(x*, u*,t)

= min {g(x*, u, t)+|:2—: (t, x*):| f(x*, u, t)} . 8.4

uelU(t, x*(1))
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The first order partial differential equation (8.3) that V(t, x) satisfies for
(u, x)=(u*, x*) is usually called the Hamilton-Jacobi-Bellman equation. To
prove this theorem, let >0 such that t,<t<t+e<t¥. Then applying Lemma
8.1, we have

Vit+e x*(t+¢e))— V(t, x*(t)

t+e
=— [ glx* u* s)ds= —eg(x*, u*, 1)+0(c) . (8.5)

t

On the other hand, we also have
Vitte x*(t+e)—V(t, x*@)=[V(t+ex*(t+e)— V(t+e x*(1))]

+V(t+e x*1)— V(e x*(1))]

=¢ [g—: (t, x*(l)):| X*(1)+ s%}; (¢, x*(1)) + o(e)

=s{[§i(t, x*(t))}f(x*, w0+, x*(t))+°(1)} :
ox ot

Since

V(tf, x*(t¥))=min { tf g(x, u, t)dt: ucU (t%, x*(t’f))}

it

tf

= [ g(x*, u*, 1)dt=0 ,

4

the above estimate combined with (8.5) yields the Hamilton-Jacobi-Bellman
equation (8.3).
To verify (8.4), we again apply Lemma 8.1 to obtain, for t,<t<t¥,

5

v(t, x*(t))= [ g(x*, u*, s)ds

t

t+e 1
= min {'[ g(x,u,s)ds+ | g(x,u, s)ds}.

uelU(t,x*(t)) | 1 t+e

Hence, using Lemma 8.2, we have

V(t,x*(t))= min {trg(x,u,s)ds+V(t+£,x(t+8))}

uelU(t, x*(1)) t

= min {eg(x* u, 1)+ V(t+& x(t+8)+0(e)} . (8.6)

ucU(t, x*(1))
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Since

Vit+e x(t+¢€)=V(t, x(t))+sljg—;c/(t,x(t))}f(x, u, t)+£%—lt/(t, x(t))+ o(e)

and x(t) =x*(t) is the initial state under the minimization process in (8.6), we may
deduce from (8.6):

—a—V(t, x*(t))= min {g(x*, u, t)+[g—: (t, x*(t)):| f(x*, u, t)+o(l)} .

at uel(t, x*(1))
Now, taking the limit as e—0 and applying (8.3), we obtain (8.4).

Remark 8.1 To apply the method of continuous-time linear programming to
determine the pair (#*, x*) of optimal control and trajectory, the first step is to
solve for f(x*, u*, t) and g(x*, u*,t) in terms of (0V/dx)(t, x*(¢)) in the minimiz-
ation process (8.4). Usually this requires writing u* in terms of x* and the n
components of (GV/0x)(t, x*(t)). If g(x*, u, t) is not differentiable with respect to
the p control coordinates of u, classical variational methods cannot be applied
and other “non-smooth” optimization methods are employed. The next step is to
put f(x*, u*, t) and g(x*, u*, t), which are now in terms of (the components of)
(0V/0x)(t, x*(t)), or u* in terms of x* and (8V/dx)(t, x*(t)), into (8.3) and solve
this Hamilton-Jacobi-Bellman equation for V(t, x*) (usually in terms of x*).
Finally, determine (u*, x*) from the available information.

To illustrate this process, we return to the one-dimensional example:
1
minimize § | [x?(2)+u*(t)]dt
4]

X=x+u, x(0)=1

discussed in Sect. 7.3. Here, since g(x*, u)=x*2 +u? is smooth in u, we can simply
use calculus to determine u* in terms of x* and (0V/dx)=(dV/dx)(t, x*) by
minimizing 4(x*2 +u?)+(0V/0x)(x* + u), yielding

ov

*
U= —— |
0x

Thus, the Hamilton—Jacobi-Bellman equation becomes

ov oV 1/oV\* 1
RN LA —x*2_0
ot +x 0x 2<ax> +2x (8.7)

(1, x*(1))=0 .
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Observing that the term x*2 must be isolated, we write V' (¢, x)=c(t)x?, so that

and (8.7) can be simplified to give
é(t)=2c2(t)—2c(t)—%
c(1)=0 .

This is the Ricatti equation (Exercises 8.5, 6). By setting c(t) = —2(t)/2z(t), we
have a second order linear differential equation

Z2422—z=0

with Z(1)=0. If we pick z(1)=1, we obtain
z(t)zl+\/§eu—ﬁ)u—r)+:i\[—2eu+ﬁ>(1—r) ,
2\/5 2\/5

so that

e—v20 -0 _gJ/21-0)

1
Vit,x)=—= 2,

x
2 (\/5+ l)e—ﬁ(l—t)+(\/§_ l)eﬁ(l—z)

Hence, we can find u*, and then x* by solving

X* = x* ¥

x*0)=1 .
The answer for (u*, x*) can be shown to agree with the one obtained by using the
variational approach and solving a two-point boundary value problem given in
Sect. 7.3. We leave the detail to the reader (Exercise 8.4).

As mentioned in Remark 8.1, even if g(x, u, t) is not smooth in &, the method

of dynamic programming is still applicable. One example is the minimum-fuel
control problem (Exercise 8.11).

8.3 Discrete-Time Dynamic Programming

We next consider discrete-time dynamic programming. The problem can be
formulated as the following:

ky({u;})
minimize{ Y. g(xi u, k): {u;}eU(ko, xo)}
k=k,

X1 =f (g, u, k), x,=xq, (8.8)
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where it is understood, as in the continuous-time setting, that (k,, x;,), where
ky=k,({u;}), is in the time-space target M, and that x,€X for ko, <k <k, . Also,
the subscript 1 of k, always indicates that the terminal time k, is in the time
target J; and remember that k; depends on the control sequence {«;}. Finally,
{ur}, {x¥}, and k¥ will denote, respectively, an optimal control sequence, its
corresponding optimal trajectory, and the (optimal) terminal time with initial
time and state k, and x,. As in the continuous-time case, we define a value
function

ki
v, y)=min{k; g(xe, uy, k): {u }eU(L y)}

where x, ., =f(x,, u,, k) and x;=y .
The following so-called “discrete-time optimality principle” can be easily
verified (Exercise 8.8).

Lemma 8.3 For each I>k,,

k
V(Ia xl)zmin{ Z g(xk, u, k) {uk}EU(l’ xl)}

1
k=1

k,
=min{g(xz,"t)+min|: Y. g, b, k).

{@}eU(+1, f(x, u,))]}.

Hence, the procedure of discrete-time dynamic programming follows
immediately (Exercise 8.8):

Theorem 8.2 Let x, =x,. Then

Viko, Xi,)=min {g(xkoa Uy, ko) +min {g(xko+1’ Uys1, ko +1)

L™ Uy

+ ... +ming(xk,,ukl,k1)} - } ,

uy,

where Xy, 1 =f (Xygs Uio)s - > X, = f (X, -1, W, —1)-

Remark 8.2 To carry out the procedure of discrete-time programming, we pick
any arbitrary k; and carry out the minimization processes starting with

min g(x,, #,, k) .

L

It is important to remember that when each minimum is taken, the previous
minimum quantities must be included. At the end, we have a recurrence
relationship on {x, },k=k,, . . . , k,. Suppose that g(x,, u,, k) is nonnegative for
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each k. Then the smallest k, such that k;eJ; and x,, is in X is denoted by k¥,
and the trajectory x, =x¥, k=kq, . . . k¥, is an optimal trajectory. From {x,} we
can determine u, =ujf. Hence, ({uf}, {x¥}), k=k,, . . ., k¥, is a pair of optimal
control sequence and trajectory of the optimal control problem.

To illustrate the procedure, we consider the discrete linear regulator problem
of minimizing
1 N
F({uh)=3 Y (d+uf),
K=0

where x, ., =ax, +bu,, a and b real, and x,=y,. For convenience, we assume
that the terminal time N is fixed. Otherwise, we follow the procedure outlined in
Remark 8.2. The starting point is the trivial minimization process

V(N, xy)=min 1 (x2+u3) .
Uy

It is clear that to attain the minimum, we have
uy=0,
VN, xy)=hox3 ,

where h,=1. The second minimization process is
min {3 (x§_; +ug 1)+ VN, xy)}
Un-1

From Lemma 8.3, this quantity happens to be V(N — 1, x5 _,). It is important to
remember that V(N, xy) must be expressed in terms of uy_, before the
minimization is taken. That is, the second minimization process becomes:

V(N—1,xy_,)=min {%(x,%,_1+u§,_l)+h0(ax~_l+buN_1)2} .

It is also clear that to attain the minimum, we have

2abh,

Un-1 = T SN

a
N 267 R, V!

VIN—=1,xy_)=h;x3_, , where

_1+a2+b2x
YT2(14p%) TN
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This result suggests that V(N —j, xy_;) is always a constant multiple of x7_;,
and so we write

V(N_.]’ XN_j)=hjx§,_j, j-_—], ..,N .

Hence, the (j+ 1)st minimization process of the dynamic programming method
is

. : 1 ]
V(N —j, xy_;)=min {2(x§~j+u,%,_j)+ VIN—j+1, x~—j+1)}

Un-

.41
=min {E(x,%,_j+u§_j)+hj_l(axN_j—l—buN_j)}

Un_
and to attain the minimum, we have

W o 2abhj_,
N—j 1+2b2hj_1 N—j

a
Xn_: = XN _
N—-j+1 1+2b2hj_1 N—-j

V(N —j, xN-j):hij%I—j >

forj=1,...,N.In order to determine the optimal quantity ¥ (0, xo)=hyx3, we
have to find hy. To do so, we derive its recursive relationship as in the following.

hixg_j=V(N—j,xy_)=3(xR_;j+urn_ )+ VIN—j+1,xy_;11)

—1(y2 2 2
=3 (xf_jtuy-)thio Xy 41

1 2abh;_ 2 a 2
=1+ ——= ) 4oh | ———— R
2[ +< 1+2b2h,.1> o 1<1+2b2hj_1> ]"N J

so that we have

_142(@ b,
T 2(1+2b%h,_,)

j=1,...,N,

ho=

BN

The optimal trajectory {x,}={x}} can also be computed recursively using

a
X = - X ;
AR e TP

Xo=JYo
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and the optimal control sequence {u,} = {u}} is now

2abh;_

Uy_ ;= w' ——2bhj_1xN_j+1 .

8.4 The Minimum Principle of Pontryagin

We have now discussed the methods of continuous-time and discrete-time
dynamic programming. Although these procedures are analogous, the
continuous-time setting involves solution of a first order nonlinear partial
differential equation. A standard method is the so-called “method of character-
istics” (see, for example, Courant and Hilbert (1962)). It is, however, usually more
preferable to solve an ordinary differential equation. This is indeed possible if we
use the minimum principle of Pontryagin instead. These two methods for the
continuous-time setting are very much related. In fact, under the additional
assumption that cost functionals have continuous second partial derivatives
with respect to ¢t and the coordinates of x, we can derive Pontryagin’s minimum
principle using dynamic programming.

Suppose that the Hamilton-Jacobi-Bellman equation (8. 3) is satisfied. Then
denoting

v, T
q(t)=[a(ta'x ):| s

we have, from (8.3),

o afev, T oafov, L.,

‘I(t)zalja(t,x ):| 6_|:6_( ):| X*(1)
(?(?V ) . x
ax o ] J&* w0

— T
|2 [G—V (£, X*) £ (2%, ¥, 1)+ g (x*, u¥, t)ﬂ

| Ox | Ox
o2V T
* * *
+| G % )] flat,u%, 1)
av T [og T
= | — k) Y (yk * N %
(6 ) 2%, ,ﬂ [ax( t)}
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and ¢(t¥)=0 for some t¥eJ;. Comparing with (7.11), we have q(t)=p*(1).
Furthermore, if we define the Hamiltonian

H(x,u,p,t)=g(x,u, ) +p" (1) f(x,u,1) , (8.9)
then (8.4) is equivalent to
H(x*, u* p*, t)= min H(x* u, p*, 1), to<t<rtf .
uel(t, x*(1))

This is just a simplified statement of the Pontryagin’s minimum principle. We
summarize this in the following:
Theorem 8.3 A necessary condition for the pair (u*, x*) to satisfy

ll

F(u*)=min {F (u): ucU 1y, x0)}. F(u)={ g(x, u, t)dt

ly
x*=f(x* u* 1), t,<t<t,,
x*(ty)=x, ,

where the initial condition (t,, xo) and the terminal condition (target) Mr=J 1 x X 1
are both given, is the existence of a costate p that satisfies the terminal value problem

N 2 P R " I
p[ L o[ B0

p(tH)y=0  for some tkedr ,
such that

H (x*,u*, p*, )= min  H(x* u,p* 1)
ugU(t,x*(t))

where to<t<t¥f, and the Hamiltonian H (x, u, p, t) is defined in (8.9).

In the above derivation using the dynamic programming procedure we have
assuemd that g (x, u, t) has continuous second partial derivatives with respect to
the coordinates of x. A direct proof of this theorem and a much more general
result is possible under much weaker conditions on g(x, #, ). We postpone
discussing the more general statement of Pontryagin’s principle and its discrete-
time analogue to Chap. 10.
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Exercises

8.1

8.2
83

84

85

Use the variational method discussed in Chap. 7 to solve the one-
dimensional linear regulator problem

1 2
minimize 3 [ (x2+u?)dt
4]

and verify that x*(1)=(e+e~!)/(e>+e~2). Then solve the problem

R
minimize 5 [ (2 +u?)dt
1

X=u
x()=(e+e )/e*+e7?) .

Convince yourself of Lemma 8.1 by comparing the solutions of these two
problems.

Prove Lemma 8.2.

Show that the Hamilton-Jacobi-Bellman equation for the linear regu-
lator problem in Exercise 7.8 is

x| 2

a—V+6~VA(1.‘) Laov
ot ox T o

]B(r)R“(t)BT(t)[a V]T+leQ(t)x=0
Vit,, x(t,))=0,

and derive the matrix Riccati equation given in Exercise 7.8 by setting
Vit, x(t))=3xTL(t)x.

Supply the detail of the solution in the one-dimensional example of
continuous-time dynamic programming in Sect. 8.2.

Consider Riccati’s equation with constant coefficients

Xx=ax?>+bx+c, a#0.

Determine the parameter A (in terms of a, b and ¢) in making the change of
variable x=4Z/z to obtain a second order linear equation

F4ai+Bz=0

where o and f are constants in terms of a, b, and c.



8.6

8.7

8.8
8.9

Exercises 93

Let a(r), b(t) and c(t) be continuous functions. The first order equation
x=a(t)x2+b(t)x+c(t)

is called Riccati’s equation. Suppose that some particular solution x; of
this equation is known. Show that a general solution (containing one
arbitrary constant) can be obtained through the change of variable
x=(1/z)+ x, where z is the solution of the first order linear equation

2+ [b(t)+2a(t)x, ]z +a(t)=0 .

Apply the continuous-time dynamic programming method to solve the
linear servomechanism problem

1 1
minimize ij [(x—1)24u?]dt
4]

X=—x+4+u
x(0)=0 ,

and compare your answer with Exercise 7.7.

Prove Lemma 8.3 and use it to derive Theorem 8§.2.

Use the discrete-time dynamic programming method to write a positive
number r as a product of n positive numbers: r=1II}_, r; such that Z}_ r,
is minimum.

(Hint: Let V, be the minimum value of the sum X}_, r;. Then use Lemma
8.3 to establish

: r
V,= min {r1+V,,_1<—)}, n>2) .
oO<ri<r ry

8.10 Apply Pontryagin’s minimum principle to Exercises 7.7-9 to convince

8.11

yourself that if the terminal time ¢, is fixed, X ;=R", and the function
g(x, u, t}in the cost functional is differentiable with respect to &, then both
the variational methods and Pontryagin’s minimum principle give the
same results.

Use Pontryagin’s minimum principle to solve the one-dimensional
minimum-fuel problem

( 1

minimize { |u(s)|ds ,
uelU 0

J U={uru=const} ,

X=x+u,

x(0)=0, x(1)=1 .




9. Minimum-Time Optimal Control Problems

In Chap. 8 we derived a weaker version of Pontryagin’s minimum principle using
the dynamic programming procedure. A rigorous proof of the general statement
‘of the principle is tedious. Even in the minimum-time optimal control problem
where the cost functional is simply (t; —t,), an easy proof of the principle is not
available without using functional analysis. In this chapter we will study the
minimum-time optimal control problem for a continuous-time linear system in
some detail and derive the minimum principle for this setting. In order to give a
rigorous and yet somewhat elegant treatment, it is necessary to use some
terminology and results from measure theory and functional analysis. Our
original intention of presenting an elementary treatment of the subject matter is
maintained if the reader is willing to accept two existence results (namely:
Lemma 9.1 and the last portion of the proof of Theorem 9.2), consider
“measurable functions™ as “piecewise continuous functions”, regard the “almost
everywhere” notion as the weaker notion “everywhere with an exception of a
finite number of points”, and assume a set E with positive measure to be a
nonempty interval.

9.1 Existence of the Optimal Control Function

The minimum-time optimal control problem for a linear system we will consider
can be stated as follows:

131
minimize | 1 dt = minimize (¢, —t,)
ueW 1o ueW

x=A(t)x+B@u , 6.1

x(to)=x0, x(t;)=x, ,

where the initial pair (t,, x,) and the target position x; are fixed, and the
admissible class W consists of control functions u=[u; . .. u,]T with u; measur-
able on [ty,, ) and ju;| <1 almost everywhere, i=1, ..., p. Clearly, t; is a
function of u in the minimization process.

In order to consider a nontrivial problem, we will always assume that the
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state vector x can be brought from the initial position x, to the target position x,
in a finite amount of time using a certain control function from W. Hence, the
existence of the minimum time ¢¥ [that is, t¥ —t, is the minimum value of the
extremal problem (9.1)] is trivial. The minimum-time optimal control problem
we consider here is to study the existence, uniqueness, and characterization of a
control function u* € W which will be called an optimal (minimum-time) control
function, such that

x=A(t)x+ B(t)u*, t,<t<t}¥,

9.2)
x(to)=x4, x(tF)=x, .
To facilitate the study of this problem, we introduce the notation
t
R,= {.‘ ®(to. 5)B(s)u(s)ds: ue W} and 9.3)
X, =0 to)[xo+R,]= {Cb(t, to)Xo+ j'(l)(t, s)B(s)u(s)ds: ue W} (9.4)
to

where @ (¢, s) is the transition matrix of the linear system. We first note that these
two sets have the following convenient properties.

Lemma 9.1 Foreacht>t,, R, and X, are both closed, bounded, and convex sets
in R".

Since X, is an affine translate of R, in R", it is sufficient to verify that R, has the
above mentioned properties. An elementary proof that R, is closed in R" is
complicated. In order not to go into much detail, we apply a result from
functional analysis. Let t > t, be fixed. To prove that R, is closed and bounded, it
is equivalent to show that it is compact. Since W is the unit ball in the product
space L [to,t;1x ... x L[ts,t;]of almost everywhere bounded functions, it
is “w*-compact” and convex by the Banach-Alaoglu theorem, and hence R,, the
image of W under the transformation

K(u)= j'fI)(to, s)B(s)u(s)ds, ueWw (9.5)

is a compact convex set in R".
We are now ready to study the existence of the optimal control function u*.

Theorem 9.1 There exists an optimal control function u* € W satisfying (9.2).

From the definition of t¥, there exists a sequence {t%} that converges to t}
from above such that

x=A(t)x+B(u, to<t<t:,
] (9.6)
x(to)=xo, x(ti)=x; ,
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for some u, € W. The transition equation of (9.6) is
%
x, =0, t))xo+ f@(t’{, S)B(s)u,(s)ds, for k=1,2,....
to

Let x% denote the solution of (9.6); that is, x%(2), t,<t<t%, is the trajectory
corresponding to u,. It is easy to see that x* (¢¥) > x, as k— o0. Indeed, using the
notation |*|=|¢|, for the “length” of vectors (Remark 6.3), we have

|l =X (D) =1 x5 () — x} ()]

7
<|D(h, to)xo— D@ (1}, to)xol + _"(D(tk, s)B(s)u,(s)ds

- tjl O (T, s)B(s)u(s)ds

<|O(rh, t)xo — @ (1}, to) X0l + j‘[CD(t’;, s)— @ (11, s)] B(s)uy(s)ds

+ t.f (D(tli > S)B(S)”k(s) ds

<D (], to) =D (e}, to)llxol+ D (1], t’{‘)—lllfl |® (t7, ) B(s)u(s)| ds
+tf‘ | O (e, t0) Bs)m(s) | ds

and this estimate tends to zero as k— oo, since ®(t, t,) is bounded and continuous
on [t,, o0) and each component of #, is bounded almost everywhere by 1. It is
also clear that x§(1})e X o where X, is defined by (9.4). Since X . is a closed set by
Lemma 9.1, we may conclude that the target point x, is in X .. That is,

it
x, =0}, to)+ [ ®(t}, ) B(s)u*(s)ds
to

for some u* e W. This completes the proof of the theorem.

9.2 The Bang-Bang Principle

To study the characterization of the optimal control function u*, let us introduce
the class of so-called bang-bang control functions defined by

Woo={u=[u, ... u,]"e W:|u,(t)|=1 almost everywhere, i=1,..., p}



9.2 The Bang-Bang Principle 97

and the corresponding subset
B,={®(t, to)xo+ [ @(t, 5)B(s)u(s)ds: ue Wy}
to

of X,.

The following result, which is usualy called the bang-bang principle, essen-
tially says that if a target position can be reached by using some admissible
control function from W at t=t,>t,, then it can also be reached by using a
bang-bang control function ue W, at t=t,.

Theorem 9.2 For any t>t,, X,=B,.

Since B, = X, and X,=®(t, to){x,+ R,}, it is sufficient to prove that for any
Y€ER,, where t >t is fixed, there exists a bang-bang control function i € W, such
that

=] ®(to, )B(S)ils)ds .

to

We consider the set
V=V,={ue W: y= [ ®(t,, s)B(s)u(s)ds}
to

and use the notion of extreme points of V. An extreme point i of V is a control
function 4 in ¥ which cannot be written as a proper convex combination of
functions in ¥, so that & # u, + Lu, where u,, u, € V. It is sufficient to show that
V contains at least one extreme point and that all extreme points of ¥ are bang-
bang control functions. Suppose that #e V is not a bang-bang control function.
Then there exist a set E of positive measure in [t,, t] and an ¢>0 such that
|d;(s)|<1—e¢, seE, for some component #; of & Let us consider the linear
transformation K from W to R" defined in (9.5) and the subcollection W; of
control functions u={[u, ... u,]" in W where u;(s)=0 for to<s<rtif j#i and
ufs)=0if s¢ E,i=1...p. Since W;is a “strip” in an infinite-dimensional function
space, K cannot be a one-to-one transformation of W; into its image. That is,
there exists a nontrivial #€ W; such that Ka=0. Hence, both i, =#+¢u and
i, =d—eiarein V so that =4 (4, +u,) cannot be an extreme point of V. Hence,
if we could prove the existence of an extreme point in V, then Theorem 9.2 is
established. The proof of this fact is complicated without using results from
functional analysis. We do not intend to go into detail, except by mentioning that
the existence of an extreme point of V' is a consequence of the Krein-Milman.
Theorem [see, for example, Royden (1968) p. 207] by noting that V=K ~!({y})
is a nonempty, closed, bounded, convex subset of W.
As a consequence of Theorems 9.1, 2 we have the following result.

Corollary 9.1 There exists an optimal control function ul, in W,, that
satisfies (9.2).
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9.3 The Minimum Principle of Pontryagin
for Minimum-Time Optimal Control Problems

Our next goal is to obtain at least a partial characterization of uf,. Define
y(O)=0(to, )x(t)—xo

and observe that x(t)e X, if and only if y(f)e R,. Noting that 0e R, and R,c R,
whenever s <t, we conclude that

R= {J) R,.
toss<t
Since tf is the smallest ¢, such that y, =y(t,)eR,,, y; must lie on the boundary
ORs of R;y whenever x; =x(tf)€ X . It follows that if x, € X« then, since R, is
convex, y, must satisfy

2Ty, =77y 9.7)

for all ye R,y where z is an outer normal of R, at y,. The outer normal z enables
us to give the following characterization of ug,.

Theorem 9.3 Let u*e W be an optimal control function of the minimization
problem (9.1) with minimum time t¥ in the sense that it satisfies (9.2). Then

2T (t,, t)B(t)u* (1) =max 27D (o, t)B(t)u(t) 9.8)

almost everywhere on [t,, t¥] for some nonzero constant vector z€R". Further-
more, if each component of 77 ® (to, t) B(t) is almost everywhere different from zero,
then the optimal control function w* is the bang-bang control function
sgn{BT(t)®7(t,, 1)z}

Here and throughout, we use the notation sgn[v, ...v,]"=[sgn v,
... sgnv,]" where for a real number v, sgn v, called the signum function of v, is
defined to be 1, 0, or —1 if v>0, v=0 or v <0, respectively.

To prove this theorem, we suppose that #* € W is an optimal cotrol function
but for-any nonzero vector z in R”,

27D (to, ) B(u*(t) < max 2T®(t,, Hu(t)

on some set E = [t,, t¥] with positive measure. Let z7 be an outer normal to the
boundary of R,y at the point y, and # satisfy

2T ®(t,, t)B()a() = max 2T D (ty, ) B(tu(t)
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almost everywhere on [t,, t¥]. Then we have

* *
I&i i

[ 27 (to, ) B(O*()dt < [ 27D (to, 1) B(t)i(t) dt
or Ty, <z"$ where
it
P=[®(to, )B()a(e)dt

is in Ry, contradicting (9.7). Finally, it is not difficult to see that if each
component of zT® (¢, t) B(t) is almost everywhere different from zero, then the
optimal control function #* which satisfies (9.8) must be sgn{B” () ®”(¢t,, 1)z}
(Exercise 9.1). This completes the proof of the theorem.

Remark 9.1 Ifwe define a vector-valued function ¢(t) to be the unique solution
of the following equation

qt)=—AT(t)q(t), to<t<t},
(9.9)
qto)=—z2

then we have g(t)= — ®7(t,, t)z and so the optimal control function in Theorem
9.3 is w*(t)= —sgn{B7(t)q(t)} almost everywhere on [t,, t}]. Furthermore, if we
define the Hamiltonian to be

H(x,u, q, )=1+q"(0)[A(t)x+ B(t)u] , (9.10)

then (9.8) can be rewritten as
H(x*, u*, q, )= min H(x*, u, q, t) 9.11)
ue W

almost everywhere on [t,, t¥]. Hence, Theorem 9.3 is, in fact, a minimum
principle of Pontryagin.
We demonstrate Theorem 9.3 with the following example

minimize t,
ueW

o R RN L 9.12
51710 oflx [Tl |*e (.12)
ol-Lo) o)L
x,(0) 0 [x,t) 1
where the admissible class W consists of control functions u which are
measurable on [0, o) with |u| <1 almost everywhere.
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I

Fig. 9.1

Let u* be an optimal control function. Then from Theorem 9.3 we have

u*=—sgn[0 1] [Zl] = —sgnq,

2

where q,(t)=c¢, and q,(t)= —c,t + ¢, for some constants ¢, and c, by using (9.8).
We first conclude that ¢, #0. This is clear since ¢, =0 and z+# 0 imply that ¢, #0
so that u* would be identically equal to 1 or — 1, which cannot bring x from the
origin to the target (3, 1). Now, since ¢, #0, g, has exactly one zero at
T=c,/c,. That is, u* changes its sign exactly once at ¢t =1. This “break-point” is
usually called the switching time of u*, and it is essential since u* cannot be
identically 1 or —1.

If u*(t)=1for 0<t<1, then x, =%¢*> and x, =t, which is a (half) parabola in
the first quadrant of the so-called state-phase plane. If u*(t)= —1 for 0<t <1,
then this portion of the trajectory is in the third quadrant of this state phase
plane (Fig. 9.1). Since our target position (3, 1) is in the first quadrant and we are
interested in minimum-time control, it is clear that we must pick u*(t)=1 for
0<t<tswitching to u*(t)= — 1 at t =7. We simply solve the two-point boundary
value problem

X, 0 1]]x, 0
= -1
MR MEH
x, (0] _[37? x((tF) ] |3
x@] L] L] L]
It is not difficult to show that the solution exists if and only if t=./14/2 and
t¥=./14—1, assuming that 0 <t <1¥. Hence, the optimal control is given by

. 1, 0<t<./14/2
u (t):{
-1, Jlap<i< /14-1,

and the minimum time is t¥=./14—1.
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9.4 Normal Systems

We next consider the special case where the linear system is time-invariant and
described by

X=Ax+ Bu
(9.13)
x(ty)=x, ,

Aand Bbeing n x n and n x p constant matrices, respectively. From Theorem 9.3,
the optimal control function #* of this problem is given by

w*(t)=sgn{zTe TR} <r<t¥ | (9.14)

for some z #0in R". For #* to be unique, it is essential that no component of the
vector-valued signum function in (9.14) vanishes on interval. We need the
following definition.

Definition 9.1 The continuous-time time-invariant linear system (9.13) is said
to be normal if for every nonzero constant vector ze R” every component of the
vector-valued function zTexp[—(t—t,)A] B has at most a finite number of
Zeros.

We remark that if the linear system is not normal, then for each nonzero z, at
least one component of z7exp[ —(t —t,) A] B is identically zero, so that the same
component of #* cannot be determined by using (9.8). In this case, we have a so-
called “singular optimal control” problem.

For a normal linear system, we have the following.

Theorem 9.4 Let B=[b, ... b,]. Then the linear system (9.13) is normal if and
only if each of the matrices M 4, = [b; Ab; . . . A"7'b;], j=1, ..., p,isoffull rank.

If the linear system (9.13) is not normal, then there exist z#0 and j, 1 <j<p,
such that the function f(t)=z"exp[ —(t—t,) A]b; has infinitely many zeros on
[to, t;] and must be identically zero, being an analytic function. Thus, we have

SP@)=(—1)z"A*e " p;=0

for all te[ty, t,1, k=0, 1,..., n—1.In particular, f®(t,)=(—1)*2"4*b;=0 for
k=0,1,...,n—1, or, equivalently ZTMAb,:O. That is, M, is row dependent
and so is not of full rank.

Conversely, suppose that the matrix M, is not of full rank for some j,
1 <j<p. Then there exists a nonzero vector ze R" such that z"M a5;=0, or

2Tb=17"Ab;= ... =7"A""'b;=0 .

Then by the Cayley-Hamilton Theorem, we have z74*b;=0 for all k>0. That is,
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f®(t,)=0for k=0, 1, ... .Since f(t) is analytic for all ¢, it is identically zero, so
that the linear system is not normal. This completes the proof of the theorem.
It is perhaps interesting to relate normality to controllability as follows.

Corollary 9.2 Let the control matrix B in (9.13) have a single column. Then this
system is normal if and only if it is completely controllable.

For normal systems, we have the following uniqueness theorem.

Theorem 9.5 If the continuous-time time-invariant linear system (9.13) is normal
then the minimum-time optimal control function u* is unique.

We only prove the case when the matrix B has a single column and leave the
general case to the reader (Exercise 9.7). Suppose that u¥ and u% are two optimal
control functions and x¥(t) and x¥(t) are their corresponding (optimal) trajec-
tories. Since the target position is the same for both control functions, we have

5

fe ¢ By (t)—u¥(t) ]dt =0 . (9.15)

to

Let z, be a nonzero constant vector in R" so chosen that
u¥(T)=sgn{zle -4 T
almost everywhere on [t,, t¥]. Then, since |u¥| <1, we must have
T e 0T MMBIy* (1) —u%(1)] =0 (9.16)
so that multiplying zT to the left of (9.15) gives
z1e 7B ut () —u(1)] =0

almost everywhere on [¢,, t¥]. Since the linear system is normal, the scalar-
valued function 77 exp[ — (t —t,) A]B has at most a finite number of zeros so that
u¥(t)—u%(t)=0almost everywhere on [¢,, t¥], establishing the uniqueness result.

When B has a single column, we have the following result that governs the
numbers of switching times.

Theorem 9.6 If the linear system (9.13) is a single-input normal continuous-time
time-invariant system, then its minimum-time optimal control function u* has a
finite number of switching times. Furthermore, if all the eigenvalues of the system
matrix A are real, then the number of switching times of u* is at most n— 1.

Let z#0 and u*=sgn{z"exp[ —(t—t,)A]B}. Since the analytic function
zTexp[—(t—1t,)A]B has only finitely many zeros on [t,, t¥], u* has a finite
number of switching times.

Suppose that all the eigenvalues 4, . . ., 4, of A are real. Let us first assume
that they are distinct. Then we may write A= P diag[4,,..., 4,]P ! for some
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nonsingular matrix P. It follows easily (Exercise 9.8) that

u*=sgn{zTe ¢"1)1B}

=sgn{z"P diag[e” 17", e At~ ]p-ipg)
S A
- ~4j(t—1t0)
=sgn c;e” ,
where ¢,, ..., ¢, are real constants. Since the polynomial

n
pO)= Y ¢
ji=1

has at most (n—1) positive roots by the Descarte’s rule of signs, and
x=-exp[ —(t—1t,)] is a monotone decreasing function at t, the number of zeros
of pexp[—(t—t,)] does not exceed n—1, so that u*(f)=sgn{pexp[—(t—t,)]}
has at most (n— 1) switching times.

In general, suppose that the eigenvalues of A4 are y,, ..., p, with multi-
plicities m,, . . ., my, respectively, where m, + ... +m,=n. Then using (6.5) we
have

S —to)
u*(t)=sgn<z" Y eti~"p B

i=11=0 I

where P, are constant matrices and each ¢;(t), j=1, ..., k, is a polynomial of
degree m;—1. A mathematical induction proof (Exercise 9.9) shows that the
function

k
()= Y. cj(t)erst=
j=1

has at most my + ... +m,—1=n~1 real zeros. This completes the proof of the
theorem.

Exercises

9.1 Prove that if a vector-valued measurable function #* satisfies

Y (Ou*(t)= maL;cyT(t)u(t)



104

9.2

9.3

9.4

9.5

9.6

9.7

9. Minimum-Time Optimal Control Problems

almost everywhere on [t,, t¥] for some vector-valued measurable function
¥, where each component of y is almost everywhere different from zero and
the admissible class W consists of vector-valued functions u=[u, ... u,]"
with each u; measurable and |u;|<1 almost everywhere, then u*(t)
=sgn{y(t)} almost everywhere.

Let W be the class of all measurable functions u with |u|<1. Solve the
minimum-time optimal control problem:

minimize t,

X | 10 1] x 0

|~ |o 0] x2:‘+|:1:|u

O] _[ 3] [x)]_[o
X0 | -1]° x,(ty) - O:I.

Prove that the minimum-time optimal control function u* for the damped
harmonic oscillator discussed in Exercise 7.1 with a>=4w} is given by

u*(t)=sgn{e"?(z,t+z,)}

where z=[z, z,]7 is an outer normal vector discussed in Theorem 9.3.
When the system is nonlinear, the corresponding minimum-time optimal
control problem may not have a bang-bang solution. This can be seen in the
following example. Consider the nonlinear system

X=u—u? .

Show that the minimum-time optimal control using measurable functions u
with |u| <1 taking x from x,=0 to x, =1 is the unique solution u* =3.
Verify that the two-dimensional system described by (9.12) is normal and
the eigenvalues of the system matrix are all real and distinct so that by
Theorem 9.6 the (unique) optimal control function has at most one
switching time.

Determine the normality for the linear system with the system matrix 4 and
control matrix B given by

and B=

N
I
oo o
=)

1
0
0

S = O

Also, verify that the number of switching times on [0, o) for the
corresponding optimal control function u* is at most 2 by expressing u* to
be the signum function (9.14).

Prove Theorem 9.5 when B is an n x p arbitrary constant matrix.
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Show that if A=P diag[4,,..., 4,]P~* where P is a nonsingular con-
stant matrix, then

e ¢4 = p diag[e M7 e ATt pol

Use mathematical induction to prove that the function

k

h(D)= Y. ciiyereo

ji=1
where uy, . .., p, are distinct real numbers, each c;(t) is a polynomial of
degree m;—1, and j=1, ..., k, has at most m; + ... +m,—1, positive

ZETOS.



10. Notes and References

In our attempt to introduce the state-space approach to control theory, we have
only included what we believe to be the most basic topics that give the reader a
good preparation for further investigation into other areas of the subject. Our
treatment has been elementary and yet mathematically rigorous. There are many
texts in the literature that are written for similar but different purposes. For
linear system theory, we refer the reader to Balakrishnan (1983), Brockett (1970),
Chen (1984), Kailath (1980), Padulo and Arbib (1974), Timothy and Bona (1968),
and Zadeh and Desoer (1979). For further investigation into optimal control
theory, the reader is referred to Bellman (1962), Fleming and Rishel (1975),
Knowles (1981), Lee and Markus (1967), Macki and Strauss (1982), and
Pontryagin et al. (1962). It is an impossible task to list all other topics that we
have not covered in this treatise. We only include the following related ones
without going into details, and refer the interested reader to the appropriate
literature.

10.1 Reachability and Constructibility

Recall that a linear system is said to be controllable if starting from any position
x, in R" the state vector can be brought to the origin by a certain control function
in a finite amount of time (Definition 3.1). If the reverse process can be
performed, the linear system is said to be reachable. In other words, the system is
said to be reachable, if for any given target y, in R", a control function can be
chosen to bring the state vector from the origin to y, within a finite amount of
time. Just as observability is “dual” to controllability, the “duality” of reac-
hability is constructibility. More precisely, a continuous-time linear system is said
to be (completely) constructible over the time interval [¢,, t, ], if for any given
input function u(t), t, <t <t,, the terminal state x(t,) is uniquely determined by
the input-output pair (u(¢), v(t)), to <t <t,. Of course, an analogous definition
can easily be formulated for discrete-time linear systems. See Kailath (1980) and
the references therein for more detail.
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10.2 Differential Controllability

A linear system with continuous-time state-space description
x=A(t)x+B(t)u
v=C(t)x+D(t)u

is said to be differentially (completely) controllable at time t,, if starting from any
position x, in R”, the state vector x at t, can be brought to any other position x,;
in R"in an arbitrarily small amount of time by certain control function u. Assume
that A(f) and B(t) are respectively nxn and nxp matrices with infinitely
differentiable entries, and set
d
Mo()=B(1), M., (@)= _A(t)Mk(t)-i'a'EMk(t)s k=0,1,... ,

and

Mp®)=[Mo(0) My(®) ... M,_;(0) ... ] .

Then this system is differentially completely controllable at t, if and only if the
matrix M ,(t,) has rank n (for more detail, see Chen (1984)).

10.3 State Reconstruction and Observers

If a continuous-time linear system described by
X=A(t)x+ B(t)u
v=C(t)x

is observable, we have seen that the initial state x(t,) and hence the state vector
x(t), t>t,, can be (uniquely) constructed, at least theoretically, from the
information on the input-output pair (u(t), v(z)) for to<t<t. In fact, from
Chap. 4, we have:

x()=®(t, t,) P, ! [ j" @7 (1, t,)CT(1)v(1)d7

[ [ 72, 1) CT (@) CR)D(, 5) Bs)u(s) ds dr} ,

to to

where P, is given in (4.2). However, if the system is not observable, so that P, is
singular, we need an observer to give an estimate £ of x. One usually requires that
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[£(t)—x(t)]—0 as t— + co. An observer is an associated system defined by

£=A(0%+B@)u+G(t)[v—C(t)£]
£(to) =%

and the problem is to “design” the gain matrix G(t) so that the estimation satisfies
the specification. Let y = x — £ be the error. Then combining the observer and the
original linear system description, we have

y=i—%=A(t)y—G() [v—C(1)%]
=A@)y—GO)[Ct)x—C(t)£]
=[A(t)—-G®)C®)]y .

This is a new free linear system. Let ‘P(t, s) be its transition matrix. By
Theorem 6.3, we can conclude that the estimation satisfies the specification
(i.e. |#(t)—x(t)|—0 as t— + o0) if and only if

1

[ 1¥(x, s)ldt<M < o0

s

for all t > s>t,, provided that the matrix A(t)— G(t)C(t) is bounded for all t > ¢,,.
~This is a specification on the design of the gain matrix G(t). For time-invariant
systems, another specification is to choose G such that all the eigenvalues of
A—GC lie in the left (open) half complex plane (Theorem 6.2). If the original
system is already observable, the estimation could improve its exponent on
exponential stability. Indeed, it is proved in Wonham (1967) and O’Reilly (1983)
that a gain matrix G exists such that the matrix A— GC has arbitrarily assigned
eigenvalues if and only if the observability matrix N4 is of full rank.

In some applications it is conceivable that the dimension n of the state vector
x is very large. Hence, it is important to construct an estimator £ with fewer state
variables. The associated system that defines the estimator with the minimum
number of equations is called a minimal-order observer. It is known that the
dimension of the minimal-order observer is at most n—gq (cf. Luenberger (1964)
and O’Reilly (1983)).

10.4 The Kalman Canonical Decomposition

The decomposition described in Theorem 5.1 was first considered in Gilbert
(1963) where the eigenvalues of the system matrix were assumed to be distinct. A
generalization to time-varying systems was studied in Kalman (1962, 1963) and
Weiss (1969). However, we would like to point out again that as the example
described by (5.3) indicates, there is no guarantee that the subsystems %, and %,
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are, respectively, completely controllable and observable, although we have
arrived at the desired decomposed form. In fact, a unitary transformation cannot
change the situation and a more general nonsingular transformation may be
required.

The essential idea initiated in Kalman (1962, 1963) is to utilize the fact that
the intersection of the null space Ny =vN,, of N, , and sp M, is invariant under
A. To carry out this idea in more detail, the decomposition transformation
matrix was formed in Sun (1984) by using certain basis of V,® ... @V, =R"
as columns, with V,=sp M znN,, V,=sp M znR,, V3=N.nN,, and
Vy,=N.nR,, where N®sp M, ,;=R,®N,=R". We note, however, that the
invariance of V| under 4 alone does not guarantee the complete controllability of
the subsystem ;. This can be seen in the following example. Let

110 0
A= (011}, B=|0|, C=[011],
001 1
so that
001 011
My=1|1012]|, N,=]012
111 013
1
No=sp 0 , N.={0} and
0
1
V1=Sp 0 5 V3=V4={O} .
0

By choosing ¥V, =sp{[0 0 1]7,[0 1 1]7}, we obtain the transformation matrix

100
G=1001
011
so that
Lo 1 o
A=G14G= 0: 0 —1 ,B=G'B=]|1 ,C=CG=[01 2] .
0} 1 2 0

It is easy to see that the subsystem %, is neither controllable nor observable
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although V| is the intersection of the controllable subspace sp M, and N, (for
more detail, see Chen and Chui (1986)).

10.5 Minimal Realization

If the system, control, and observation matrices of a state-space description of a
time-invariant linear system are given, the transfer function of the system can
easily be calculated by using (5.11). The inverse of this problem is much more
important, and many methods are available to estimate the impulse responses
(6.23) or (6.29), and hence the transfer functions by using Laplace transform or z-
transform, respectively. This problem which is known as the realization problem
obviously does not have unique solutions. One would usually prefer, however, to
determine a state-space description with the lowest dimensions. The solution of
this so-called minimal realization problem is indeed “unique” (up to a similar
transformation) according to Kalman (1963), if it exists; and the existence is
guaranteed provided that the time-invariant linear system is both completely
controllable and observable (Silverman (1971)). This important problem will be
further investigated in a forthcoming monograph by the present authors.

10.6 Stability of Nonlinear Systems

We have already considered stability of a free linear system described by
X=A(t)x where A(t) is an n x n matrix with continuous entries. More generally, a
free system may have a possibly nonlinear description:

i=f(x, 1) (10.1)

where fis a vector-valued function defined on Q x J, with Q = R" and J =[t,, o).
In applications, f must be assumed to be smooth enough that (10.1) with any
initial condition has a unique solution. A point x, in Q is called an equilibrium
point (or state) if equation (10.1) with initial state x(t,)=x. has the unique
solution x(t)=x, for all t>t,. Hence, any equilibrium point must satisfy the
equation f'(x,, t)=0 for all £ >¢,. By the change of variable g(x, t)=f (x + x., t), it
is sufficient to consider the equilibrium point to be x, =0, and of course, we must
assume that 0 is in the interior of Q. It is clear that the stability definitions in
Chap. 6 are valid for this more general and possibly nonlinear situation. In the
study of stability of nonlinear systems, the main tool is the so-called Lyapunov
Sunction.
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Let V (x, t) be a scalar-valued continuous function in Q x J such that each of
the first partial derivatives

L4 v v
ox,” " ox, ot

is also continuous in Q xJ. We say that ¥V (x,t) is a Lyapunov function, if it
satisfies the following conditions throughout Q x J:

i) V(O,¢1)=0forall t>¢, .
i) Vix,t)>0for all x#0 and t>t,, and
i) (dV/dt)<O0 for all x#0 and (>t .

Here, the (total) derivative of V (x, t) is given by

av (oVv\T . oV [oV\T av
E‘(E) x+5_<a> ro+l (102)

The famous Lyapunov Theorem says that if a Lyapunov function V(x, t) exists,
then the free system described by (10.1) is asymptotically stable about 0O; that is,
there exists a >0 such that whenever |x(ty)| <9, |x(t)]—>0 as t— + 0.

This local stability result can be made global if V' (x, t) satisfies the additional
condition

iv) V(x, t)> o0 as |x|> 0.

(This “limit” means that for any positive number M,, there exists another
positive number M,, such that whenever |x(¢)| > M, we have V (x, t)> M, for the
same values of t.) The stronger statement of Lyapunov’s theorem is that if a
Lyapunov function V (x, t) exists and satisfies (iv), then any state x described by
(10.1) must tend to 0 as t— + oo (independent of the initial state).

The relation of the Lyapunov function and the differential equation (10.1) is
given by (iii) using (10.2).

There is also a Lyapunov instability theorem which states that if there exists a
scalar-valued continuous function U (x, t) on Q x J such that all its first partial
derivatives are also continuous on Q x J, and that U (x, t) satisfies

i) U(0,1)=0 for all t>t, ,
ii) there exists a sequence x, #0 in Q that tends to 0 such that U (x,, t)>0 for
all teJ and all k, and
ii)) (dU (x, t)/dt)=(0U/0x)T f(x, t)+(0U/0t)>0 for t =1ty all x in Q that are
sufficiently close to but different from 0,

then the system described by (10.1) is unstable about O.
For non-free systems, that is, those described by

E=f(x,u,t) (10.3)
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where # is the control function, an analogous (but slightly more complicated)
stability result of Lyapunov can be formulated. For more details in this direction,
we refer the reader to Lefschetz (1965a, 1965b).

10.7 Stabilization

Let us return to linear systems. Suppose that the free linear system x= A(t)x is
unstable and we have a state-space description with the control equation
x=A(t)x+ B(t)u. One method to stabilize the free system is to introduce a
certain linear feedback:

u=K(t)x ,
such that the “free” linear system
x=[A(t)+B{t)K(t)]x

is stable. For time-invariant systems, the following result is useful in stabilization
(Willems and Miller (1971), and Wonham (1967, 1974)):
There exists a feedback matrix K, such that the eigenvalues of the matrix

A—BK can be arbitrarily assigned, if and only if the controllability matrix M, is
of full rank.

10.8 Matrix Riccati Equations

In solving the linear regulator and servomechanism problems (Exercises 7.8, 9),
we have to solve the matrix Riccati equation

L(t)= —L(t)A(t)— AT(t)L(t)+ L(t) B() R (t) BT(t) L(t) — Q (1), to,<t<t, ,
L(t1)=S

in order to obtain a linear feedback control function. Here, ¢, is fixed and S a
constant matrix which may be zero. To solve this terminal value problem of a
nonlinear matrix differential equation, we could instead solve the initial value
problem

M| [ A@® —-B@OR'(®B'(0)][M
N | | -0 —A4T@) N
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and obtain L(t) using L=NM ~'. Indeed, it is routine to check that if

i

satisfies the initial value problem and M is invertible, then L=NM ~! solves the
above matrix Riccati equation. That M is actually invertible follows by
observing that M(t)=®(t, t,) where ®(t, 1) is the transition matrix of the linear
system

M=[A(t)—Bt)R™ '(t)BT(t)L()]1M .

Note also that N(t)=L(t)®(t, t;) so that L=NM ~*. For more detail on this
subject we refer the interested reader to Brockett (1970).

10.9 Pontryagin’s Maximum Principle

The minimum principle of Pontryagin that we discussed in Chap. 8 was called
the maximum principle in the original book of Pontryagin et al. (1962). Of
course, a simple sign change in the costate vector p changes minimum back to
maximum, namely:

min H(x, u, p,t)= —max H(x,u, —p, t)

(cf. (8.9)). In a more general setting, consider an optimal control problem in which
the continuous-time system is described by

x=f(x,ut), tel,

x(to)=xo
where xeR", ue R? with p<n, and f is a continuously differentiable vector-
valued function. The initial time and position t, € J and x, respectively are both
given, and the problem is to bring the state vector x from x, to the target position

x, € X with terminal time ¢, € J, by using some admissible control function u,
so that the cost functional

ty

Fu)={ g(x, u, t)dt

is minimized. Here, X and J; are prescribed closed subsets of R" and J,
respectively, and the admissible class of control functions is

W={ueRP: u; measurable and |y;| <1 almost everywhere, i=1, ..., p} .

For technical reasons, the function g(x, u,t) is assumed to be continuously
differentiable with respect to each component of x. Let us define the Hamiltonian

H(x,u,p, po, )=pog(x, u, 1) +p" f(x, u, 1)
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and set

M (x’p7 va t)=max H (x’ ",P’ p07 t) -
ueW
Then, Pontryagin’s maximum principle can be stated as follows (Lee and
Markus (1967), Knowles (1981), and Pontryagin et al (1962)): If u* is an optimal
control function with corresponding trajectory x* and terminal time t¥, then there
exist nonpositive constant p, and a vector-valued continuous function p(t)

=[p, @) ... p,®)]7 such that

oH !
x*=|:*‘$(x*, ll*,P, pO’t):| :f(X*’ "*’ t) ’

. oH T g of
pz—['b;(x*yu*’pip05t)] ZPOE(X*,"*at)JF a(x*vu*ﬁt)]p ’
where to<t<t¥ ,
ii) H(x*, u*, p, po, )=M (x*, p, po, t), toc<t<t} , and

t

0 dg .
iii) M (x*, p, po, t):J{pT(S)a—Jtr (x*(s), u*(s), 5)+Po§(x*(3), u*(s), S)}ds .
tf
Note that M (x*, p, po, t¥)=0.
In the discrete-time setting, let us discuss an analogous control problem

where the system equation is
X1 =filx,m), k=0,1,...,N—1.

Here, foreach k=0, ..., N—1, x, € R", u, € R” with p<n and f, is a continuously
differentiable vector-valued function. Suppose that each X,=R" k=0,
I,...,N,and U, cRP, k=0, 1, ..., N—1.Then the optimal control problem is
to find a sequence {,} of admissible control functions and a corresponding
sequence {x,} of trajectories such that a given functional F(xy), such as the
Pontryagin function (Sect. 7.1), say, is to be maximized, subject to the
constraints u, e Uy, k=0,1,..., N—1,and x, € X,, k=0,1,..., N.

A set A in R" is called an affine set if [(1—A)x+ AyJe 4 for every x, ye 4 and
A eR!, and the smallest affine set containing a set H is called the affine hull of H,
denoted by aff H. The relative interior of a convex set C in R" is defined to be

1i C={xeaff C: (x +&S)n(aff C)=C for some ¢>0}

where S is the unit ball x|, <1 in R". Let xe X <R". A closed convex cone C is
called a derived cone of X at x if for any collection of vectors p,, ..., p,inri C,
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there exists a neighborhood B of the origin relative to R%, and a C! mapm: B— X,
satisfying

k
m(r)=x+ Z ,p;+o(r), as =0,
i=1

where r=[1,, ..., t,]7 € B. The discrete-time Pontryagin maximum principle
can be stated as follows (Wonham (1968)). In the above problem, let V,(x)
=f,(x, Uy) be convex for every xe R", k=0, 1, ..., N—1. Let the pair {uf}, {x}}
be an optimal solution of the control problem and C, a derived cone of X, at xf,
k=0, 1,..., N. Then there exist a number >0, and vectors p,, q, k=0,
I,..., N, such that

. %) T

1) pkz[%(x:’ uf)il pk+1—'qk’ k=05 la LERREEEY N—l’

il) g7 x<0, for all xe X, ,

i) pii g filxf, "i")]=maxpf+1ﬁc(ﬁl‘,uk) ,

ue Uy

. JOF T
iv) P0:0>PN=#[a—x(xN):| ~qy, and

(ﬂ,Po,---,PNaqo,---’qN)¢O .

10.10 Optimal Control of Distributed Parameter Systems

In practice, a great variety of control systems can be described by a partial
differential equation

7 0z 0z 0%z 9%z 0%t V=0
S s A A A A A v A LU, W X, = )
Ox’ 0t’ dxox’ oxot’ or?
where t is the time variable restricted to [to, t;]=J, x=[x, . . . x,,]T a point in a

region X, z=[z,(x,t) ... z,(x, t)]7 restricted to a region Z with each z;(x, )
being a continuously differentiable function with respect to both x and ¢,
u=[u (6 ... u(0)]", v=[v,(x)...0,x)]7, w=[w,(x,0)...wy(x,)]7 (r+s
+ h < n) are vector-valued control functions belonging to closed bounded subsets
(called the admissible sets) U, V, W, respectively, and f=[f, . . . f,]7 is a vector-
valued function. Such a control system governed by a partial differential
equation is called a distributed parameter system. Suppose that the boundary-
initial conditions for the vector-valued function z are given by z(a, t)=¢,(¢),
z(b, t)=¢,(t) and z(x, ty)=y(x), where a, b are constant vectors such that
a<x<b and ¢,, ¢, and ¥ are known vector-valued functions. The optimal
control problem described by the above system and boundary-initial conditions
is to find a triple (u*, v*, w*) of control functions such that when all the
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supplementary constraints imposed on the system as well as all the boundary-
initial conditions are satisfied, a given cost functional

F iz 0z %z Pz g
6x ot’ oxox’ ox ot’ 5[2’”’ v, W, X,

is minimized, where the terminal time ¢, can be either free or fixed.

Similar to the optimal control theory of systems governed by ordinary
differential equations, we also have Pontryagin’s maximum principle for certain
specific distributed parameter systems. The following simple example is given in
Butkouskiy (1969). Consider the system described by

0%z 0z 0z
axat_f< ax o th> ™

where ze Z=R", te[0,¢,], and xe[0, b] with fixed values of t, and b. The
admissible set W of control functions consists of all such vector-valued functions
w(x, t)=[w,(x, 1) ... w,(x, t)]" where each w;(x, t) is piecewise continuous and
bounded by a function defined on [0, b] x [0, ¢, ] with values in some convex
closed region in R?, p<n. The boundary-initial conditions for the function z is
given by z(0, )= ¢(¢) and z(x, 0)= Y¥(x). The cost functional to be minimized is
given by the Pontryagin function

——-—CTZ(b, tl) s

where c is a constant n-vector.
In order to formulate Pontryagin’s maximum principle for the above optimal
control problem, we introduce the Hamiltonian function

6z3z T 0z
H< M wp,xt) f(zz,a 3 th)

where p=[p,(x, 1) ... p,(x,t)]7 is determined by

?p" 9H d oH d oH

oxot oz dx _[o0z\ dt [dz\
a(%) %)

opT oH

ox T for\ M The (2)
ol 2

opT oH

@ __ at x=b,
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Then Pontryagin’s maximum principle can be stated as follows: If w*(x, t) is an
optimal function and z*(x,t) and p*(x,t) are the corresponding optimal vector-
valued functions defined as above satisfying (1) and (2), then

oz* oz* oz* oz*
H *’ 9 E *’ *’ ’t = H *’ 9 E E *’ 3
<z x> a0 P ) e <z ax o P x’)

almost everywhere on [0, b] x [0, t,].

The optimal control theory of distributed parameter systems is a rapidly
developing field. The interested reader is referred to Ahmed and Teo (1981),
Butkouskiy (1969, 1983), and Lions (1971).

10.11 Stochastic Optimal Control

Many control systems occurring in practice are affected by certain random
disturbances, called noises, which we have ignored in the study of (deterministic)
optimal control problems in this book. Stochastic optimal control theory deals
with systems in which random disturbances are also taken into consideration.
One of the typical stochastic optimal control problems is the linear regulator
problem in which the system and observation equations are given by the
stochastic differential equations

dé=[A B(t I
E=[A@)E+B(uldt+T(t)dw, <t<t,

dp=C(t)édt+dw,,

and the cost functional to be minimized over an admissible class of control

functions is

F(u)=E {tj [ETQ()E+uTR(t)u] dt} .

Here the initial state of the system is a Gaussian random vector &(t,), w, and w,
are independent standard Brownian motions with w, independent of &(t,), the
data vector #(t) for t,<t<t,, t, being a fixed terminal time, is known with
7(0)=0, the matrices A(t), B(t), C(¢t), ['(t), Q(t) and R(t) are given deterministic
matrices of appropriate dimensions with Q(t) being nonnegative definite sym-
metric and R(t) positive definite symmetric, E is the expectation operator, and
the admissible class of control functions consists of Borel measurable functions
from I={t,,t,;] % R” into some closed subet U of I.

Suppose that the control function has partial knowledge of the system states.
By this, we mean that the control function « is a linear function of the data rather
than the state vector (in the latter case the control function is called a linear
feedback). For such a linear regulator problem, we have the following separation
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principle which is one of the most useful results in stochastic optimal control
theory and shows essentially that the “partially observed” linear regulator
problem can be split into two parts: the first is an optimal estimate for the system
state using a Kalman filter, and the second a “completely observed” linear
regulator problem whose solution is given by a linear feedback control function.
The separation principle can be stated as follows (Wonham (1968), Fleming and
Rishel (1975), Davis (1977), and Kushner (1971)): An optimal control function for
the above partially observed linear regulator problem is given by

u*=—RI(O)BT(K()E ,

where & is an optimal estimate of & from the data {n:to<t<t,}, generated by the
stochastic differential equation (which induces the standard continuous-time
Kalman filter):

dE=[AWE+B(t)u*dt+H(t) [dyn—C(t) € dt]
E(to))=E(E(to))

with H{t)=P(t)CT(t) and K(t) being the unique solution of the matrix Riccati
equation

K(©)=K(@)B@OR™ ' ()BT(K(0)— K@) At)— ATOK (1) —0(1), to<t<t,
K(t,)=0,

and P(t) being the unique solution of the matrix Riccati equation
P(t)=A@)PO)+P@)ATO+T()TT()—P()CT(t)C(t)P(?)
P(to)=Var (&(t,)) .

The theory of Kalman filtering is an important topic in linear systems and
optimal control theory, and as mentioned above, the Kalman filtering process is
sometimes needed in stochastic optimal control theory. Discrete-time (or digital)
Kalman filter theory and its applications are further investigated in Chui and
Chen (1987).
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Answers and Hints to Exercises

Chapter 1

11 e 1 afy—bBé—ay —aaf+bp*+a? . B

T Byl apd—bo =y —aud+bBS+oy 5|
v= 1 [6
T ad—py Flx .

1.2 a and b are arbitrary and ¢=0.

1.3

14

1.5

Since a, f, y, and d can be arbitrarily chosen as long as ad— fy #0, the
matrices

1 [aﬁy—bﬁ&—ay —aaﬂ+bﬂ2+a2:|’ B=rﬁ] and

- ad—PBy| ayd—bé*—y*  —aad+bPd+ oy I_(S
1 .
C= [6 —p] are not unique.
od— By
Let the minimum polynomial of 4 be p(A)=poA"+p,;A" '+ ... +p, with
po=1. Then a;=p;, j=0,1,...,n. If D#0, then m=n and b;=CA’"'B

+p,CAI"2B+ . +p,_,CAB+p, ,CB+p,D, j=0, 1,... n If D=0,
then m=n—1 and b;=CA/B+p,CA'"'B+ ... +p,CB, j=0, 1,...,
n—t.

(a) Let x, =v,, x, =0, Xx3=0v,, x,=0, and x=[x, ... x,]7. Then
0 1 0 0 0 O
| %2 —an —b,, —by, a; By uy
o o o 1 ["*]o o [uz] ’
—ay, —ay —by; —by a, B,

p,1 1 0 0 0
= x
b, | [0 0 10
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1.6

Answers and Hints to Exercises

(b)
Ay Ain B,
A= : : |, B=|: |,
Anl Ann Bn
c=[C,...,C,] and D=0,
where
0 1..0.. 0
A,‘,': l s
_a::n —a::l nxn
0 0
5= o |
_a{n _a{l nxn
j#i’ i,j=1, ’n’
0 0 0 0...0
Bi=1, 0 , C;=|1 0...0
%1 i Jnxn 0 0...0
i=1, , H.
(a)
0 1 0
Xp41= 1 —1 X+ 1 U
n=[1 0]x,.
(b) Let
0 1.
A= .
0 1 B,
—Q, ...... —a,

nxn

(ith row)

, B=|: |, Cc=[10"--0]and D=[B,] .
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Then the f;s are determined by

-1

B Ao, Gy, a, b,
B1 el Ty bp-n+1 |’
ﬂo "-ap bm—n

where ap=1, b;=0 for j<O0 .

Chapter 2

2.1

2.2
23

24

25

el "to %(tz——té)e'_"’
L, ty)= .
¢( H 0) |:0 e

X@)=sp{l,t,..., ", "1} .
Let

(—1), = t—t;, if t>t;,
YT, if t<t; .

Then X(%)=sp{(t—to)+, t—t) s, .., (E—1ty)s} -

B 1 0 t+1%/3 22 +1%/4
soeal] [ [ [0

tN+1/(N+1)+tN+3/(N+3)
tN*2)(N +2) '

If the input is zero, then the output is v=Cx=C®(t,ty)x,.
Define v(-)=C®(t, t,)(-). Then v(ax,, +bxy,)=av(xy;)+bv(x,,). If the
initial state is zero, then the output is v=Cx = C{} ®(t, s) B(s)u(s) ds. Define
v(-)=Cj:0®(t, 5)B(s)(-)ds. Then v(au, + bu,)=av(u,)+ bv(u,). If (2.10) is
considered, then

0, =C Ay ... Aogxo+C,Boug+ ... +CBy_ u,_,+ D, ,
and if (2.11) is considered, then
v()=C(t)D(t, to)xo+ C(t)[,, @ (t, 5)B(s)u(s)ds+ D(t)u(t) .

Since A4y, ..., A,_, and @ (¢, t,) are all nonsingular, the linearity of the
output in the input implies that C,x,=0 for all k and C(t)x,=0 for all
t>t,.
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2,6 By Holder’s Inequality, we have

1/p l/q
[lA@), dt < (le(t)|5> (j 1 dt> )
J J J

Suppose that
flA@Edi<CP< oo .
J

Then it follows from the Picard iteration process that

t St Sk
| Py(t)— Py (1)l = Z IA(S1) [ Alsy) - - j A(Sk+1)dSksq - - - dsy
to ;o to 1
t S Sk
N-1
< kZMJ|A(S1)|1 [ |[A(s2)ly - J |A(Sk+ 1)1 dSksq - - - dsy
to ;0 to

t

_ifm jIA (50) (fm sk+1)|,,>1 (5c—to)"ds, .. . ds,

to

< Z CﬁA (sl - J |A(s)li(sx—to) 1 dsy . . . ds,

t

_ 1/p
; [|A (sly - j |A(sk—1) <J [A(s)5(s _to)p/quk>

to
(Sy—1—to)ds,_, . .. ds,

Sk-2

N-1
<y CI|A(S1)|1 cee J‘ |A(sk- ) (5k— 1 —1t0)'"?
KM

to

Sk -1 1/p
< ) |A(sk)|5d5k> (Sc-1—to)MMds—y ... ds,

Sk -1

t
N-1
< k_ZM C2J|A(31)|1 o [ |ASk- )I(Sk—1 —t0)*dsy_y .. . ds,
to
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t

N-1
< Z CkJ|A(31)|1(51 —to)4ds,
KM

to
N—-1
< Z Ck+1(t_to)(k+l)/q
k=M

which tends to zero uniformly on any bounded interval J as M, N— 0
independently. The rest of the proof is the same as the proof to the
convergence of the infinite series (2.6) in the /; norm.

If the discretization formulas A, =hA(kh)+ I etc. are used, then only the
veetor [a b]T=[—11/15 —11/25]7 can be brought to the origin in two
steps when h=1/5 and only the vector [a b]” satisfying 1210a— 550b + 336
=0 can be brought to the origin in two steps when h=1/10. If the
discretization formulas @;;=® (ih, jh) etc. are used, then only the vector

15 1 -1 16, 1
h T ah__ = L—10h R RN | —10h
=1 =5 71" 2 RETRE N
—~ | 1 (h+2)
(1 —e—10h . —10h_1
T 10 )

can be brought to the origin in two steps.
By Holder’s Inequality, we have

_ 1/q 1/p
Zlaij+bij|p 1|a.'j|S(Z_Iaij—i"biﬂq(p-l)) (Zlaij|p>
i, J i, j i, j
1/q 1/p
= Z_Iaij+bij|p) <Z|aij|p> and
i, j LJ

-1 1/q 1/p
Z_Iaij+bij|p Ibijls<z.|aij+bij]q(p-1)> <Z|bij|p>
i, j i j i, J

1/q 1/p
= _Z_Iaij+bij|p> (Zlbijlp> .
[ i J
Hence, we have

|[A+B|b= Z la;;+by;lP < Zlaij+bij|p_l|aijl + Zlaij+bij|p_1|bij|
i, j i J

iJj

(g () )]
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so that
1-1/q 1/p 1/p
(Z.laij'i'bij'p) $<Z|aij|p> +(Z|bij|p> )
i, j i J i, j
ie, |A+B|,<|A|,+|B|,.
Chapter 3
31 If xl, x,€V,, then there exist two controls u#; and u, such that 0=®(t,

3.2

33

34
35
3.6
3.7

)x;i+ [, ®(,5)B(s)u(s)ds, i=1, 2. Thus, 0=®(t1,)(ax, +bx;) + i,
(t s)B(s) (au,(s)+ bu,(s))ds; ie., (ax, +bx,)e V, If x, can be brought to
0 at time s by a control u, then it can also be brought to 0 at time t>s by

()= u(t)y, if to<1<s
W, i s<r<t .

Hence, ¥ is a subspace of V, if and only if s<t. Combining the above two
facts, we can similarly prove that V is a subspace of R™.

Let x=x, +x, where x, e(vR)l and x,€vR. If yeIm{R}, then there is a ¢
such that y=Rgz and so yTx,=2"RTx,=2"Rx,=0. Hence, ye(vR)*,
Im{R} = (vR)". By linear algebra, dim(Im{R})=dim vR)l Hence, Im{R}
=(vR)*. Suppose that x=0. If x,#0, then O=xTx=xT(x, +x,)
=xTx,#0, a contradiction. If x,#0, we have the same contradiction.
Hence x=x, +x,=0.

If & is controllable, then for any x,, there is a & such that

]:(I)(t*, S)B(s)u(s)ds= —D(t*, ty)x, ;

ie,Im{L.}=R" By Lemma 3.2, Im{Q,.} = R". Hence, Q.. is nonsingular. If
Q. is nonsingular, let u(s)= BT(s)®7(t*, s)y. Then for any x, the equation

D(t*, ty)xo + [,jf @ (t*, s)B(s)BT (s) DT (t*, s) ds]y=0

has a unique solution y. Hence, & is controllable.

det Q,=15(t—1to)*#0 for all t>t,.

det Q,=(b*/12)(t —t,)* #0 for all t>t, and b #O0.

Verify that (%, t,)y, + [i, @ (t*, s)B(s)u*(s)ds=

By the Cayley-Hamilton Theorem, A™=0 for m>n. Hence

b'l
aTe”A=aT<I+bA+ . +FA"+ .. .>=0 .
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3.8 Since ®,,=0forall n> 1, even the zero control sequence can bring any y, to
the origin. But since the last rows of A4, and B, are all zero, the last row on
the left-hand side of ®,qy, + Xk - | @, By — 14, =y, is always zero. Hence
no control sequence can bring y,=0to y,=[0...0 1]7. Since

X1 105a—10F"tug, —10F 24, — ... —w_y ]
¥ [xkz:l B [~ 1057 ta+ 104" 2ug, + 10 3uy + ... +0.1u
—10x,, -10
siaiE
any control sequence which brought x,, to 0 will bring x,, to 0. But any
control sequence which brought x,, to 0 cannot bring x,, to 1, ie., [4]
cannot be brought to [{].

39 For any given initial state x,=[{], we always have x, =[%]. Hence, [%] can
be brought to any preassigned position [}!] provided that the control is
chosen to be [;°]=[3.].

310 If Ry is a nonsingular matrix and wu;_,=B ®}z then ®py,
+(Zt,,, ®pB;_ BT, ®L)z =y has a unique solution z; i.e, & is control-
lable. If & is controllable, then for any x,, there is {u;} such that ®px,
+X0,  ®OmB;_u;_ =0;ie., p, = — ®px, is in the image of R;+. Since x, is
arbitrary, Im{Rp} =R" ie, Ry is nonsingular.

3.11 If & is controllable, then by Theorem 3.6, R« is nonsingular. The universal
control sequence wuf=B®k . Rx'(y,—®py,) then satisfies ®py,
+32 @B, u;_ =y, ie., & is completely controllable.

3.12 & is (completely) controllable if and only if the matrix M5 has rank n, and
this is equivalent to saying that (3.14) has a solution u,, . . ., #,,,_,; i€, a
universal discrete time-interval can be chosen such that its “length” is n.
Consider the example

RN 0 a
xk+l_[0 1:|xk+|:1]uk > xo—[b:l .

3.13 det M z=acd+bc*—d?*#0 .

3.14 det M, p=ac—b—c*#0 .

Chapter 4

4.1 For any t,=>0, there exists a £, >max(t,, 1) such that

v(to) _ 1 (I—=to)—=lto—1] || xo,
v(t,) 1 2(1—t,) X0z
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where the coefficient matrix is always nonsingular. But if 0 <t, < 1, then the
coefficient matrix becomes [} 3] on (¢, t;) = (to, 1).

The corresponding coefficient matrix is

1 2(1—1¢,)
1 tT—t 4+t —1]

which is nonsingular for any ¢, €[0, 1) and ¢, > t,. But the matrix becomes
[} 9]for any to>1 and t,>1,.

a and b are arbitrary.

det N, = —b?;det P, =b>[(t —t,)/12 —a](t —t,)* which is nonzero for some
t>t, if and only if b#0; a can be arbitrary.

& has the observability property on {I, . .., m} if and only if

C, ]

C,.® Uiy
1P |y, :

Cmq)ml Um

has a unique solution x;, and this is equivalent to the coefficient matrix
being of full (column) rank, or x,=0 whenever (4.6) holds for k=1, ..., m.
Suppose that & is observable at time [. Then there is a p> [ such that x, is
uniquely determined by (0,v,), k=1, ..., p. If L, is singular for all m>1,
then y{' L,y,=0 for some y,#0, i.e., C,®,,y,=0, k=1, ..., p. But for u,=0
we have 9, =C®,x, k=L ...,p, so that v,=C®,(x,+ay,) for k
=l, ..., pand arbitrary ¢, a contradiction. Suppose that L, is nonsingular
for some p>1. Then it can be shown, by using (3.9) and (4.5), that

P
Lx= ) ®;Civ—

k=l+1 k

(Dle Ci D,u,

k

Z O,C{ C DyB; _ u;_, ,
1i=1l+1
so that x; is uniquely determined by #, and v, over {I, .. ., p}.
If the rank of N, is less than n, then there is an a#0 such that Ca=CAa
= ... =CA" 'a=0. By the Cayley-Hamilton Theorem, CA* ‘e =0 for all
k>1so that La=0for allm>[. Hence L, is singular for all m>I so that, by
Theorem 4.3, % is not observable at time [
Suppose that N, has rank n. Let x, and y, be two initial states determined
by the same (u;, v,), k=1, . . ., m. Then it is easy to obtain N ,(x,—y;) =0, so
that x,=y,; i.e, & is observable at time L.
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Suppose that & is totally observable. Then C,A* 'x,=0 for k=1, I+1.
Hence x,=0. It implies that T, = [¢$] has rank n. Conversely, if T, has
rank n, then whenever C,A* 'x,=0 for k=1, I+ 1, we must have x,=0.
Hence & is totally observable.
Let ®(t,s) and W(t,s) be the transition matrices of A(f) and — AT(1),
respectively Then & is controllable on (t,,t*)<>Q, is nonsingular
<:>j @ (toy,t)B(t)BT(t) @7 (to,t)dt is nonsingular, or equivalently P.=
[ WT(¢, 1) B(t)BT(t)P(t, to)dt is nonsingular (Lemma 4.1) <> has the
observablllty property on (t,,t*). Conversely, & has the observability
property on (t,,t,) <>P,, is nonsingular <:>j“ W(to, ) CT(R)C ()P (to, 1) dt
is nonsingular (Lemma 4.1)<>Q is nonsmgular <& is controllable on (t,,
ty)
&, is completely controllable with the universal discrete time-interval
{I,...,0*} if and only if the matrix Rx=X!_,,, ®xB,_,Bl,®k
Z’* z+1(Az*—1 ...A)B;_BI_ (AT ... AE_,) is nonsingular. Multi-
plying both sides to the left by (4,_, ... 4,)”! and to the right by
(AT ... AL_))"',itisequivalent to the nonsingularity of the observability
matrix Ly of the system &£, where L.=X'_,, ,¥,B,_,BL ¥,
+E L AT (A7 )"1"Bi- B [(A)" ... (47 )"]. Finally,
Ly is nonsingular if and only if %, has the observability property on
{l, ..., I*}. Similarly, &, has the observability property on {I, ..., m} if
and only if L,=X",,, (4;_; ... A)TCICi(A;_, ... A,)) is nonsingular.
Multiplying to the left by [(472;)T... (47 Y)T] and to the right by

(A7' ... Apl)), it is equivalent to the nonsmgularlty of the controllability
matrix R of #,, which is equivalent to &, being controllable with
{1, . m} as a universal discrete time-interval.

If c=0 and a#0, or if c#0 and a and b are arbitrary, then ¥ is completely
observable. If ¢ #0, & is always totally observable; otherwise it is always not
observable.

For all a and b, & is always completely observable. The input-output
relation of its dual system is &, , 3 + (@ — 1)Dy 4+  — D 4 ; = 1. The dual system is
completely observable if and only if a#1.

r(Ncq)=
c [ c(aip
r CA (A—l)n—l =r ‘C'(A‘l)n—z
camt C
[
_ CA™!
=r : =r(NCA-1) .
C(A—l)n—l
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Chapter 5

5.1

52

53

54

Since M ;3=G~'M g and Nz;= N, ,G, the nonsingular transformation G
does not change the ranks of M,z and N ,. Since the transition matrix of
the transformed system is ®(t, s)=G ~'®(t, 5)G, Op=G ~1Q,(G~ 1T and
P.=GTP.G.

If the system & with zero transfer matrix D is completely controllable,
then Q.+ is nonsingular. Hence, a universal time-interval (¢, t*)< J and a
universal control #* exist for the same system with a nonzero transfer
matrix D such that the equation

D(t*, ty)yo+ :j D (t*, s)B(s)u(s)ds=y,

has an admissible solution #* for arbitrarily given y, and y,.

If the system &% with zero transfer matrix is observable at time ¢, then

there exists an interval (t,, t,) = J such that (u(t), v(t)), t, <t <t,, uniquely

determines an initial state x(t,). Hence, it can be shown that the equation
t

C(H)D(t, t)x(to)=0(t)— D(t)u(t)+ [ C()D (¢, 5)B(s)u(s)ds

to

has a unique solution x(t,) for an arbitrarily given pair (u(t), v(t)).
t

x(O)=@(t, to)xo+ [ @ (t, s)[B(s)u(s)+ f(s)]ds
=d(t, to)[xo+ jd)(to, s)f(s)ds]+ jl'd)(t, s)B(s)u(s) ds
=0, ty)yo+ jd)(t, 5)B(s)u(s) ds

CO) (1, to)x(to)=v(t) — D(D)u(t) + j CO@ (¢, HIBMu(r)+f(7)]dr

=[v(t)+ j Ct)® (@, 1) f(t)dt}—D()u(t)+ _l[ Ct)®(t, t)B(t)u(r)dr
=vo(t)— D(t)u(t)+ j. Ct)®(t, 1) B(t)u(r)dr .

to
Consider the linear system & with discrete-time state-space description
X+ 1=AX+ By
Uk = Ckxk +Dkllk .

If {G,} is any sequence of nonsingular constant matrices and the state
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vector x, is changed to y, by y, = G, 'x,, then the matrices 4,, B,, C,, and
D, are automatically changed to 4,=G, ' 4,G,, B,=G, 'B,, C,=C,G,
and D, = G, ' D, respectively. Hence, the transition matrix of # is changed
from ®,;=A4,_,...4; to O,;=G; ' A-1G-1G;A;-2G_> ...
G;'A;G; and the matrices R and L,, are changed to
»

ﬁ1*= Z (Bl*iGi_—llBi—leT—l[Gi_—IIJTdSIT*i and

i=1+1
Zm = (T)le GkTCkTCka(r)kl >

k=1+1
respectively. Moreover, Ry and L,, have the same ranks as Ry and L,,,
respectively.
The transfer matrices D, can be assumed to be zero in the study of
controllability and observability. The control equation can be extended to
include a sequence of vector-valued functions, i.e., X, ; = A.x, + B, + £,
without the controllability and observability properties being changed.
The justification of the above statements is similar to the answers to the
previous three exercises.
Letxbein V,. Thenxesp{N{,}sothat ATxesp{NT,}=V,® V,. Hence
ATx=x,+x, where x,e ¥, and x,eV,. Since Ax,esp{M,p} which is
orthogonal to V,, we have

xIx,=(x,+x,)Tx,=(ATx)Tx, =xTAx, =0 .

Hence, x,=0 and ATx=x,eV, .

Let W=[w;;laxq and A=W TAW=[a;;]4, with d;=0 if i>j. Then,
since W is a unitary matrix, we have WA = AW. Comparing the (1, 1) entry
and the (2, 1) entry, we have w,,d;;=w,;+w,; and w,d,;=w,,,
respectively, so that w,; =0. Thus, B=W TB=[0 w,, w,3 w,,]7, and
&, is not controllable.

Use the definitions of M,z and N, directly.

Since any nonsingular transformation does not change the ranks of M,
and N¢, (Exercise 5.1), the dimensions of ¥, V,, V; and V, are never
changed.

Since
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and rank (U ~*M  z)=rank(M g)=n, +n,, we have

Bl All A12 Bl All A12 1 Bl . .
rank([[Bz][O 4, |18, o 4, B, =n;+n,;

i.e., the combined subsystem .#, and ¢, is (completely) controllable. Since
the above shows that

B, * ...*
ank =n,+
n ([3 Azsz...A;;‘BZD 1H

where the * entries are in terms of 4,,, A,,, A,,, B, and B,, we have
rank([B, A,;B, ... A% 'B,])=n;,

so that &, is also (completely) controllable. (Note: this does not imply that
&, is also (completely) controllable because the rank of
[B, A;;B,...A%7'B,] may not be n, see (5.3) and Exercise 5.13b.
The observability can be similarly proved.

Z{gk+1}=kzogk+1z_k= _Zg0+zkzogkz_k: _Zgo+ZZ{gk} .

2]
Z{gk+j}=kzogk+jz—k=_z](go+glz—1+ ce +gj—lz_(1—l))

+zigo+giz7 1+ .. )

k) A
=—z/ .Z‘o gz '+2/Z{g,} .

_ (s—1) _ 1 _ _
H(S)_(s+3)(s—1)_s+3’r(MAB)_1 and r(Ng, =2 .
Gn() —gm(t)=("—t")—a, (" =" ) — ... —au_i(s—2)

=(—0[E™ T 5" 2+ L. st 24
R e R  LAME  Aiat) EEIUE Ty |

=(s—0[s" T +sm " (t—a,)+s" (2 —at—ay)+ ...

+s(tm 2 —a "3 — ... —a,,_,t)
+(" —a "2 — . —a,- )]
m—1
=(s—1 Y (tF—ay " — ... —g)sm T
k=0

Use the definitions of M,z and N, directly.
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Chapter 6
6.1 (a)
0 0 —(t—t,)
[-®(tt)=|0 0 0 ,
0 00O
1 0
{equilibrium points}=sp{ [0 |, | 1
0 0
(b)
0 0O
I-®@t)=|0 0 0 :
0 0 —(ty)
1 0
{equilibrium points} =sp<| 0 |, |1
0 0
6.2 (a)

6.3
6.4

6.5

— 122 . 1
-0, t,)= [g Z(to tO)] , {equilibrium points} =sp{[0]} .

1—cosh(t—t,) 1—sinh(t— to)]

(b) I—®(t, tg)= [ 0 0

1
{equilibrium points}=sp{ | cosh(t—t,)—1
) 1—sinh(t—t,)

Since A(t)x,=%.=0and A(t) is nonsingular at some ¢t >t,, we have x.=0.
Let E=[e¢;;] and F=[ f;]. Then

2
|EF|§=Z(Z‘3UJ}1¢) SZ(ZeiZjijz'k>=ZeiszfJgk=|E|2|F|2 .
AN e\ 7 7 7 ik

|Al|,=|(A+ B)—B|,<|A+ B|,+|B|, implies that |A4|,—|B|,<
|A+B|,, and |B|,=|(4+ B)— A|,<|A+ B|,+|A4|, implies that | B|,—

|Al,<|A+B|,. Hence | |A|,—|B|,|<|A+B], .
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lim 3 F(s,)At,

n—wi=1

iF(t) dt

a

< lim 2 |F(t:)|,At;= le(t)lpdt :

P n—wi=1

p

Suppose not. Then there is some entry ¢, ; (t,to) in @t t,), 1<i,
jo<n, such that |¢;, ; (s, to)l> &g for £y, >1, and some &,>0. Let x(ty)=
[0...010...0]"=¢;,. Then

1x (a0l = [ @ (L g, Lo)X(Eo) = [ Ds, jo (Errs L) >80 5

i.e., |x(t)}+>0 as t— + oo, contradicting the asymptotical stability assump-
tion.

(a) lim,_ , e~ “t*=1lim,_ , (t/e"). Use L’Hospital’s rule.

(b) Without loss of generality, suppose that ¢ > 0. Write c =exp(In ¢). Since
¢<1,In ¢<0. Hence, from (a) we have

lim mc™= lim e 9" m*=0 .

m— o m-— oo
Let ¢ satisfy 0 <c <a. Then for large values of t, ¢t <(a—b)t —In M. Hence,
|f(t)|§Me_‘" tb____elnM e—at eb lntSe—[(a—b)t—ln M]Se—ct

for all large values of t.

The time-invariant free system (6.1) is asymptotically stable about 0 if and
only if |®(t, ty)| >0 as t— + o0 by Theorem 6.1, where ®(t, ¢,) is given by
(6.6), if and only if Re{4;} <0 for all j. Similarly, the system is stable about 0
if and only if there exists some constant C>0 such that |®(t, t,)| < C by
Theorem 6.1, and this is equivalent to Re{4;} <0 for all j and 4; is a simple
eigenvalue of 4 whenever Re{A;} =0. This statement can be concluded by
examining (6.6).

Denote

Then E/=0 for j>n where n is the dimension of E. Hence,

ko (k o
Jk= JIs=[J,+EJff =Y (]_>J’§‘1E’

ji=0
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|J% ], =/nlAls—0 as k— + oo if || < 1.
[T, =/nlAlk=/n< + o0 if|A]=1 .
Jhl, < z ( )IJ" i, E,

Il

no1/k o
y <j>\/ﬁ|l|’§”lEf|2——>0 as k— + oo if | 4] <1 .
i=0

20

(@) 4, =1, A,=—i. Re{4,;} =Re{1,} =0 but 4, #1,. The system is stable.
(b) A, =1, A,=—1i. |A{|=]|4,|=1 but 4, #4,. The system is stable.

(@) [l 4]l =sup,y),=1]Ax|; <supj,,= |4],|x], by Exercise 6.4.

(b) Let x be the corresponding eigenvector with |x|,=1. Then Ax=Ax
and hence

|2l =14x],=]|A4x|, < sup |[Ax[,=]A]| .

|x]2=1

17|, = >kif|A|=1 .

(©) 1A+ B|l= sup |[(A+B)x|< sup [Ax|+ sup |Bx|=[l A+ B] .

|xj2=1 |x|2=1 |x]2=1
loeA || =sup|adx|=lof sup | Ax|=|af | A] .

Let J be the Jordan canonical form of 4, A=P~'JP, and let y, = Px,.
Then x, , ; = Ax, is stable about 0 if and only if y, , , = Jy, is stable about 0,
and this is equivalent to [4;|<1 for all j and 4; is a simple root of the
minimum polynomial of J whenever |4;|=1, (Theorem 6.4). This state-
ment is also equivalent to |J*||<|J¥|, being bounded for all k by
Exercises 6.13aand 6.11. x, , ; = Ax, is asymptotically stable-about 0 if and
only if y, , , = Jy, is asymptotically stable about 0, and this is equivalent to
|4;]<1, j=1,...,1 by Theorem 6.4, or ||J*|<|J¥,—0 as k—o0, by
Exercises 6.13a and 6.11.

Definition. A discrete-time time-varying free linear system is said to be
asymptotically stable about an equilibrium point x,=0 if there exists a
0>0 such that |x,|,—0 as k— + co whenever |x,|,<d. It is said to be
exponentially stable about the equilibrium point 0 if there exists a positive
constant p <1 such that the state vectors x, satisfy |x,|<]x,|g* for any
initial state x, and all sufficiently large k.

Theorem. Let ®,, be the transition matrix of the discrete-time time-
varying free linear system. This system is asymptotically stable about 0 if
and only if |®,,|—0 as k— + co. This system is exponentially stable about
0if and only if there exists a positive constant p < 1 such that |®,,| < p* for
all sufficiently large k.
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Let

d nj—1 P,.
sI—A) 1= b
( ) =E (S_Aj)l+1
Then

nj—

h(t)=,sﬂ-‘{H(s)}=$“{C(SI-A)“B}:.,i :Z

Niﬂ

.jt Ql] ,

where Q,;=CP;B.

If there exists a pole, say 4;

> Which lies on the closed right half s-complex

plane, then
tlo ; d nji—1 tl
h(t)=—| et Qlojo Z Z n e Qlf
lO . i=0 I=0 l .
(D # (jo.lo)

so that [§7|h(t)|dt is unbounded for large t.
Conversely, if all the poles of H(s) lie in the open left half s-complex plane,
then

t—1o
Tij [tledt|dT < M(t,)

0

nj—-

1=0

j h(@)ldr < _i
0

for some constant M(ty)< + 0.

Definition. A discrete-time time-varying system is said to be I—O stable
about an equilibrium point x, =0, if for any given positive constant M,
there exists a positive constant M, such that whenever x,=0 and
|u,| <M, for all k>0, we have

lv,| <M, for all k>0.

Theorem. A discrete-time time-varying system is I—O stable about the
equilibrium point 0 if and only if there exists a positive constant K such
that

C, Y Aj_, ... ABj|<K, forall k=1,2,....

If |u,| <1 for all k>0 and X*_, |h;|<K for all k>1, then
k—1 k—1

o< Y [l < Y I y|<K, forall k>1.
=0 =0

Hence the system is I — O stable about 0. If the system is [ — O stable, then
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there exists a positive constant K such that whenever x,=0and |u,| < 1 for
all k>0, we have |p|<K. If Z¥_ |h;| is unbounded, then for each
(arbitrarily large) positive constant N, we can choose k; >0 such that
Tk |h;l>pgN. Hence, if we denote by hy, the (I, k)th entry of the g x p
matrix h;, then

ki 9 P 12 kb a p ki
panv< ¥ i< § (5 Ea) <8 5 % ihai<o 5 b

ji=1 1k=1
for some (a, f) where 1<a<gq and 1<f<p. That is, Z5L | |h;z/> N. Let
w,_;=[0...0sgn{h;,}0...0]",

where sgn{h;,,} is placed at the fth component of u,, _;. Then

ki 2
2( Y [hm,|> >N?,
=1

ki—1 2

ki
Z hy - z”l = '21 h;u, ;
i=

|ka

a contradiction.
zX(z2)=AX(z)+ BU(2) and
Mz)=CX(z),

C(zI— A)*B

det(zI— A)

Let r be the radius of convergence of £ a,w". If r > 1, then lim,,_, , |a,|'/"
=1/r<1 so that £ |a,| < co. Conversely, if X3 |a,| < oo, then |a,|—0 as
n—o0. Hence, r=lim|a,| /"> 1. Since f(w) is a rational function, f(w) has
only finitely many poles, say at z,,. .., z,, and |z,|>1 for all k. We will
see that |z,|> 1 for all k. Suppose |z, |=1. Then, rewriting f(z) as

V(z)=CX(z)=C[zI — A]"'BU(z) =

_ by, bim,
f(W)——p(W)"r(W_Zl + ... -’r-m)-F c.

( bnl bnm >
+ +o )
w—2z, (w—2z,)™

where p is a polynomial and 1 <m;< o0, i=1,...,n, it follows from
1 1 1 1 &1V
= = — Z (—) M)n .
w—z, 21w Zy =0 \ 2,
Zy

that if m; =1, we have

1
Zla [>const+z AT =0 .
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If m, > 1, we can prove the same result by induction. Hence |z,|> 1 for all
k. 1t follows that f(w) is analytic in |w} < r where r > 1.
6.22
0 1 0
A: = =| —
[1 0:|, B [1], and C=[-1 1].
This system is completely controllable, and since one of the eigenvalues of
A is 1, the system is not asymptotically stable. Since H(s)=1/(s+ 1), the
system is I —O stable.

6.23

: 01 -1
[10:|’B|:1:|’an C=[0 1]
Chapter 7

7.1 Let x;=6, x,=6. Then

minimize F(u): F(u j' ldt,

luf<1

X 0 1 0
o

X, —w; —a X, 1
[x1(o)j|;|:90] [Xl(tl):‘z[o]

x,(0) 0, 1’| x,(ty) 0

7.2 A Bolza problem can be reformulated as a Mayer problem by adding an
extra coordinate x,,; and using the Pontryagin function with
F(u)=h(ty, x(t;))+[0...017[Z%),,,]. A Mayer problem can be
changed to a Lagrange problem by letting F(u)=h(t,x(t,))=
j [h(t,, x(¢,))/(t; —to)] dt. A Lagrange problem can be converted to a
Bolza problem by simply choosing h = 0.

7.3 Suppose that k;(t), the ith component of k(t), is not zero at t = t,€[ty,t,].
Without loss of generality, suppose k;(t,) > 0. Then by the continuity of
k;(¢), there exists a neighborhood N(t,, é) of t, on which k;(t) > 0. Choose
7(t)=[0....0n(t)0...0]7 where the ith component #;(t) >0 on
N(t,, ). Then we have j“kT(t n(t)dt> 0, a contradiction.

74 &= d(ax)— d liml[ (u+en,t)—x(u,t)]

. = = g fim x(u+en, x(u,
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= 11rn [x%(w+en,t)—x(u,t)]

e—>0¢&

I

hm [fx(u+en,t),ut+ent)— f(x(u,t), nt)]

e>0¢&

lim % {f(x(u,t),u,t)+ % (x(u,t), u,t) [x(u+en,t)—x(u,t)]

f(x(u t), u,0)en+ o(e) —f(x(u,t),u,t)}

Ly of
== (x,u,t)E+ a(x,"at)ﬂ .

ti

175 0=4,F(@*)= J [Z—g (x*,u*,1)E(t) + %(x*,u*,t)n(t)]dt

7.6

to
ty ot t

= ig‘(x*,u*,t)(l)(t,1:)Qr(x"‘,u*,r)1](1:)dr dt+ ~a'—q(x*,u*,t)1](t)dt
ox Ju ou
to to to

t) ty 131

= J‘ j a—g(x*,u*,t)(I)(t,r)g[(x*,u*,1:)1](1:)dt dr + Jai(x*,u*,r)q(T)dt
ox ou ou

to t to
3] 3]

_ dg * % of * gk 99 * ¥

_JH = (%, (L 72 (%%, D)t + 20 (%%, ) (@)
to T

The completeness of U implies (8.10)
Since x* = x* — p* and p* = —x* — p*, we have p* = —x* — p* = —x*

+ p* — p* = 2p*. Hence, p*(t) = C, exp(y/2t) + C,exp(—/2t). The two
boundary value conditions

p*(1)=C eV + Cpev2 =

x*(0)= — (p* + p*)(0) = — (1 +ﬁ)c1 —(1-/2)C, =1

give
-1

T2+ D420

1
C,= exp(—2\/§) .
2=+ (/2+1)

exp(2\ ﬁ) and
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1.7

7.8

7.9

7.10

Answers and Hints to Exercises

Let H=%4[(x—1)* + u*]+ p(—x +u). Then (0H/0u) = u+p =0 implies
that u* = —p*. The two-point boundary value problem is

*| =1 —1]]x* |:O
PR BRI MEHE
x*0)=0, p*(1)=0 .

Finally,

wr=4—4(1+/2)eV* — L (1-/2)e V2 .

Since the Hamiltonian is

H =4[x"0)Q(0)x(0) + # () RO(®)] + p* OL AW x() + BOu(0)] ,
we have, from (7.13), u*(t)= — R~ !(t)B” (t)p(t) and hence

B(t)= —ATOp(1) ~ Q0)x(1)

p(t,)=0.

Let p(t) = L(t)x(t). Then L(t,) =0 and for any nonzero x(t) (determined
by the arbitrarily given x,), from the costate equation we have

[L(t)+ L) A(t) + AT(t)L(t) — L(t)B(t)R™ (t)BT(t)L(t) + Q(t)]x(t) =0 .
Since the Hamiltonian is

H=3[(y—0)"Qt)(y — v)+u" R(t)u] + p"[A(t)x + B(t)u] ,

from (7.13) it follows that u* = — R~ !BT(t)p so that
p=—ATp—CTOQM)(y—v)

pt,)=0.

Let p(t) = L(t)x — z. Then for any nonzero x (determined by the arbitrarily
given x,), from the costate equation we have

[L(@)+ L) A@t)+ AT(t)L(t) — L(t)B(t)R ™ ()BT () L(¢)
+CT()QOC(H)]Ix+ {z+[A(@)— BE)R™ ()BT () L(1)]z
+CT )0y} =0,

L(t,)x(t;)—z(t,) =0 .

From (7.5) we have

1
Su =6, u, = limvg Lug+em—w]=1m, and
£ 0
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o1 ox
0x, = lim — [x;(w, + 1) — x,c ()] = E L/
e—>0& &’u

For convenience, we will simply write x,, u, instead of x}, u}, respectively.

A necessary condition is 6 F =0, i.e.

ks dg
Z |: (xki uk’k)éxk + = (xkauk,k)‘aukjlz

Since x,,, =f(x;,u,k), it follows that

0 )
0%, 14 =%(xk,uk,k)5xk + é{(x,(, u,, kYou, k=ky, ko+1,...

6xk0=0 .

Let @, k > j, be the transition matrix of (1). Then

‘ of :
0x, = Z d)kj_a;(xj—lauj—l’]—l)éuj—ls

i=kot1
k=ko+1,ko+2,...,k;, .
Substituting (2) into (1), we obtain

ki 6]'

ki

dg :
0= Z [:a(xk’umk) Z (ijé;(xj—l,uj—l,]—

k=ko+1 j=ko+1

0g 0g
+a(xk,uk,k)é"k]+a(xko,uk0,ko)5uk0
ky ki a
= Z Z (xkauka )q)kj f( _] 1,u] 1s )6”
k=ko+1 j= ko+16 a
Z (xk,uk, )5"Ic
b [ kdg of
= P (D . j — .
jzéJrllikZ::jax(x’“uk’k) k,]au( Xi—1,U8i—1,] 1)5"1 1
ki+1 a .
+, g"‘“a (-1, 1, j—1)0u;_,
to ([ g of
= —_— (I) .l — . . j—
j=§+l{|:kgjax(x’“uk,k) ’”Jau(x’ p#j-j= 1)

0

g . dg
+a(xj_1,uj_1,] )}514] 1+6 (xk‘, u,, ky)ou, .

1)6u;_,

9k1_1 s

(1
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Since the sequence {du,,, duy, 1, . .., Ouy, _, 0, } can be arbitrarily
chosen as long as it is in the admissible class which contains the
“delta  sequences”, by choosing it to be {0,...,0,¢]},
{€,0,...,0},{0,e,...,0},...,{0,...,¢;,0} respectively, where e;
=[0...010...0]" with 1 being placed at the ith component,
i=1,...p, we obtain

99

ou
& dg of . og

|:z E(xkaukyk)(pkj:'a(xj—la"j—laJ—1)+0_I;(xj 1, Wj— 15— 1)=0

k=j

(x> 1y, ky)=0 and 3)

j=k0+1,...,k1. (4)

To simplify (4), define the costate p, to be the unique solution of

of ’ dg T
Pk=lia(xk,"k’ k)} Pr+1t [a(xk, u, k)] s k=ki, ki —1,...,ky,

pkl +1 =-0 2 a a
and denote A, :_%(xk, u,, k) and b7 = —ag(xk, u,, k). Then

Pi, = by, Pk,—1=AkT,—1Pkl+bk1«1y ce
pj=AjTAjT+1... —1bk,+A AJ+1-~-AkT.—zbk1—1

' T
Z(DkJI: xk’"kak):ly j=k1,..‘,k0,

where @, ;= A,_, ... A;is the transition matrix of (1). Hence, (3) and (4)
can be rewritten as

P;Tg(xj—u uj_l,j—1)+g%(xj_1, u_,,j—1)=0,

j=ko+1,... k. %)
Furthermore, if we define the Hamiltonian to be

H(xp, i, Prv 15 k) = gl i, k) +pils 1 f (x4, k)

then (5) is equivalent to

0H
—a;(xk,uk,PkH, ky=0,k=ky,+1,... koo
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7.11 Since the Hamiltonian is
H = 3(x{ Quxy + ul Ryw) + pils  (Axxi + Bywy)
we Lave, from Theorem 7.2, uf = — R, ' Bf p,,, and hence,
P = Al pes1 + Qix, k=ky,... ko,

Pi,+1=0.

Letp,=Lyx,_,, k=k,, ..., ky+ 1. Then for any nonzero x,_, (deter-
mined by the arbitrarily given x, ) we have L, , ; = 0and from the costate
equation, we have

[Li—A{ Loy Ax—y + QB RO L+ Al Ly B R B L,
— QA1 1%, =0.

Chapter 8
8.1 Since the Hamiltonian is H =4(x? +u?)+ pu, (0H/0u)=u+ p so that
u* = —p*. Solving the two-point boundary value problem
¥ = —p* pF= —x*

x0)=1, p*@2)=0,

we obtain
-2 2
e € _
x*(t)= 5——€+5——¢e ' and
e“+¢e e +e
-2 2
e e
u*(t) = — ef — —e ' .
e?+e? e?+e?

Solving the second problem, we obtain the same optimal control u*.

T t
8.2 min {jg(x,u,s)ds+ jg(x,u,s)ds}

uelU t T

T 7
> min{jg(x, u,s)ds + min | g(%,a, s)ds}

ueU 1 el t

T ?1
= min {jg(x,u,s)ds + [ g(x,a, s)ds} [for some (4, ) and , ]
t . T

uel
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= [g(®,4,5)ds + [ g(%,a,s)ds [for some (4,%)]
t
T

> min { fg(x,u, s)ds}

uelU

= mln{f g(x,u,s)ds + jg(x u, s)ds} where

8.3 Solving the minimization problem (8.4), i.e.

min { [xTQx—I—uTRu]—l—[aV](Ax—I—Bu)}

uecl

we obtain

av
% _ _R-1RT
u B[ax}

Substituting #* and the linear system equation into (8.3), we arrive at the
required form. For any nonzero x (determined by the arbitrarily given x,),
let V=41xTL(t)x. Then L(t,)=0 and

%xT[I;+LA+ATL—LBR‘lBTL+Q]x=0 )
8.4 Since u* = —0dV/dx = a(t)x so that

(t)

=[1+4+a(t)]x* = b(t)
x*¥(0)=1, where

e‘\/z—(l_‘)——eﬁ““"

alt) = and
(\/E-i-l)e_\/z—(l"t’_}-(\/i_l)e\/;(l—t)
b(t)=(\/§+l)e_\/z‘“*‘)_}_(\/i_l)e\/z_(lﬂ) ’

we have

o W e (3 ey
(\/5+.1)e_‘/2—+ (\/i— l)e*/z_
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and hence

e—\/;(l—t)_e\/é_(l—t)
(24 De 24 (2 Dev?

\/5_1 \/it \/§+1 —-J2t
= € _ [+ .
B-2/2) +1 (B+2y/2)e V241
-1

A=—a

u*(t) =

Substituting x = 1/z+ x, into Riccati’s equation, we have
24 [b(t) + 2a(t)x, 1z + a(t) + [— X, +a(t)x? + b(t)x; +c(t)]z> =0 .

Since x, is a particular solution of the Riccati equation, the coefficient of z*
is zero.

Imitate the procedure used in solving the one-dimensional example in this
section.

Lemma 8.3 can be proved by imitating the procedure used in proving
Lemma 8.2 (see the answer to Exercise 8.2). Theorem 8.2 can be proved by
using Lemma 8.3 repeatedly. ‘

Let V, be the minimum value of the sum £}_, r;. By Lemma 8.3 we have

r
V,= min {rl + V,,_l(—>}, nx=2.
O<ri<r ry

Since V,(r)=r, V,(r/r;)=r/r,. Hence, when n=2,

V,(r)= min {r1+L}.

O<risr ry

Using calculus, we obtain r} =\/; so that r¥ =\/; and V2=2\/rT .
When n=3,

. r . r\'"?
Vy(r)= min |r + V2<— ]= min | r, +2<—) ] .
O<ri<r ry O<ri<r ry

Using calculus agian, we obtain r¥ = /3 and so V, (r/r¥) = r*/*. Minimiz-
ing this ¥, by using the above procedure, we have r¥ =r¥ =r!/3. By
induction, we obtain r¥=r'"i=1,...,n

If the terminal time ¢, is fixed, we have the same two-point boundary value
problems as those in Exercises 7.7-9.

From Theorem 8.3, we have p = p with p(1)=0 which implies that p=0.
Hence we need to find u* such that

|u*| =min|uy|
uelU
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subject to x* = x* + u*, x*(0)=0 and x*(1) = 1. From
1

IT=x*(1)= [e! 'u*dt =(e—1)u* ,
0

we obtain u* =1/e—1) .

Chapter 9

9.1 Without loss of generality, suppose that y,(t), the ith component of y(t), is
positive on some subset E with positive measure in [t,,t*¥] and that
uf(t) #sgn{y;(t)} on E. Then u¥(t) < 1—e¢ for some ¢ >0 on E. Define
i(t) =u*(t) except that #;(t)=1 on E. Then we have e W and
Y ()d(e) > y" (t)u*(0) = max y ()u(t) ,

ueWw
a contradiction.
—1 <t<1+1/22
9.2 u*(t) - { ’ 0 < + 2
1, 2<t<t¥ 3 +./22

9.3 From (9.9) we have g,(t) = —e™/*(z,t + z,) where ¢q(t) = [q,(t) g,(t)]7 and
z2=[z,2,]" so that u* = —sgn{BT¢(t)} = sgn{e*/?(z,t + z,)}.

94 Since

t
1=x(t,) = | [u(s) —u*(s)1ds < (¢, — to)max(u—u?) ,

to
and (u—wu?) assumes its maximum at u=3%, we have t* —t,=4 and
u*=1/2

95 M, p=[? ¢&]is of full rank and has eigenvalues A, =1 and 1, = —1.

9.6 M ,p is of full rank, hence the system is normal. The optimal control
function is u*(t) =sgn{3t%z, —tz, + z3} .

9.7 Writing B=1[b, ... b,] and observing u} =sgn{zTexp[ —(t—1t,)A41d;}7,
i=1,...,p wecanprovetheresultforeachi,i=1, ..., p, by imitating the
proof of Theorem 9.5.

t—t 2 _ 3
98 e TR =]—(t—1,)A4 +( o) A* — (t=to) A+

2! 31

=I—(t—t,)Pdiag[4,,..., 2, ]P"}

(t—t)
BT

Pdiag[4}, ..., 2P~ 1 —
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=P{I—(t—t0)diag[,{1 e ]

PRY
+(i-2~§‘l)—diag[/1§, - ...}P“

= Pdiag[e M1t e ilimt)]p-l

9.9 Whenk =1, c,(t)exp[u; (t —t,)] has the same zeros as ¢, (¢) and hence has
at most m, — 1 positive zeros. Assume that h, _,(¢) has at most m; + . ..
+'m,_, — 1 positive zeros but h,(t) has at least m, + ... + m_, +m,
positive zeros. Then

k
e—Mk(t—to) hk(t) — Z Cj(t)e(uj—uk)(t—to)
j=1

has also at least m; + ... + m, positive zeros. Hence, the m, th derivative
of exp[ —u(t—10)] by (t), which is ZX21&(t)exp[(u; — i) (t—1t0)] where
(1; — my) are distinct and ¢;(t) is a polynomial of degree m; — 1 for each j,
has at least my + ... +m—m=m,; + ... +m,_, positive zeros. This
contradicts the induction hypothesis.



Notation

x, x(t), x, nx1 state vectors

u, u(t), w, px1 vector-valued control (or input) functions, p<n
v, v(t), v, ¢qx1 vector-valued output functions, g<n

x. equilibrium point (or state) 49

x* optimal trajectory (or state) 72

{x}¥} optimal trajectory (or state) sequence 78

u* optimal control function 72

{uf} optimal control sequence 78

u¥, optimal (bang-bang) control function 98

X0, Xi, initial states 9, 78

x,, X, target positions 87,94

t,, k; terminal times 70, 78

t¥, k¥ optimal terminal times 83, 87

p costate 74

p* optimal costate 74

{p¥} optimal costate sequence 79

X subset in R" to which all trajectories are confined 70, 81
Xy losed subset of X 81

%, U, W admissible classes of control functions 14, 70, 94
U(t,y) subset of admissible control functions 81

Wy, set of bang-bang control functions 96

J time interval 8§, 70

Jr closed sub-interval of J 81

M, target, My=Jrx X 81

A(t), A nxnsystem (or dynamic) matrices

B(t), B nx p control matrices, p<n

C(t), C g xn observation (or output) matrices, g<n
D(t), D qxp transfer matrices

®(t, 1), ;; state transition matrices 8, 13

G(¢t) gain matrix 108

H(x, u, p, t), H(x,, u,, py+1, k) Hamiltonians 75, 78
J Jordan canonical form 58

det A determinant of matrix A

A* adjoint matrix of A 44
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[A] operator norm of matrix A, || A|:=sup {|Ax|,:|x|,=1} 60
1/p
|A], 17 norm of matrix (or vector) 4, |[A|,:=|Y |a;P ) ,1<p<oo
ij

|A|s, 1 norm of matrix (or vector) 4, | A|,:=max|a;|
i J
|Al:=14|, 51,96
diag[A,..., 4,] diagonal matrix
& linear system
&, continuous-time linear system
&, discrete-time linear system
sp{xy,...,x,} linear algebraic span of set {x,, ..., x,} 14, 37
v null space of
@ direct sum of
L [te, t;] space of almost everywhere bounded functions 95
&£ Laplace transform 43
Z z-transform 43
H(s) transfer function 44
H(z) transfer function 66
sgn signum function 63
V(x,t) Lyapunov function 111
V(z,y) value function 83
q,(s) minimum polynomial 45

L,u:=j ®(t, s) B(s)u(s)ds 18
Q.= j ®(t, s) B(s) BT(s)®T(t, s)ds 18

P;= f 7(r, 15)CT(x) C(1)®(t, to)dr 27

[’
ng:= Zlq)l'iBi—lB?—l(D;i 22

i=l+

l*
Seiudi= ), OBy, 23
k=TH1
Ly= ) ®ICICcod, 30
k=T+1

M, p:=[B AB ... A" 'B],x ,, controllability matrix 20

Cc

Neg= C:A , observability matrix 28
CA.n—- 1

qn X n

Tc A:=|: CC:4:|’ total observability matrix 30
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h*(t, s):= C(t)®(t, 5)B(s) 62
h(t):= Ce'B, impulse response 63
hj=CA’~!B, impulse response 65

R:= {j' D(ty, S)B(s)u(s)ds: ue W} 95
X, target set 81
Xi=®(t, to){xo+ R} ={D(, to)xo+ [ ®(t, s)B(s)u(s)ds: ue w} 95

K(u):= jt- D(ty, s)B(s)u(s)ds 95
B:={®(t, to)x,+ _tf @(t, s)B(s)u(s)ds: ues Wy, } = X, 97

V=V,={ueW: y= j ®(ty, s)B(s)u(s)ds} 97

ORy#+  boundary of Ryx 98

o0l variation of vector-valued function I 73

0l/ou  gradient of scalar-valued function  with respect to u, a row-vector 73
Ol/0u  matrix, where both I and u are vectors 73



Subject Index

Admissible class (or set) 6, 14,81,113,116,117  Convex set 95, 97

Affine hull 114 Convolution 64
Affine set 114 Cost 71, 117
Affine translation 95 Costate 74, 91
Algebraic multiplicity 57 Costate equation 74
Almost everywhere 94 Costate functional 71
Analytic function 67, 101, 102
Asymptotic state-stability 50, 58, 68, 69 Damped harmonic oscillator 79, 104
Asymptotically stable equilibrium 50 Delta distribution 16

Delta sequence 78
Banach-Alaoglu Theorem 95 Derived cone 114
Bang-bang control function 96 Descartes’ rule of signs 103
Bang-bang principle 96, 97 Difference equation 9
Bellman 81, 83, 84 Differential controllability 107 -
Bolza problem 71, 79 Digital system 6
Borel measurable function 117 Discrete-time dynamic programming 86, 93
Bounded-input bounded-output stability 61 Discrete-time optimality principle 87
Bounded measurable function 16, 26, 37, 43 Discrete-time system 6, 12
Brownian motion 117 Discretization 13

Discretized system 6
Calculus of variations 72 Distributed parameter system 115
Cauchy sequence 10, 11 ° Dual system 26, 31, 33
Cayley-Hamilton theorem 2, 4, 20, 23, 28, Duality 31,33

39,101 Dynamic equation 6
Characteristic polynomial 3, 46, 56 Dynamic programming 81, 90, 94
Compact set 95
Completeness 73, 74 Energy 71
Constructibility 106 Equilibrium point (or state) 49, 110
Continuous-time dynamic programming 83, Expectation operator 117
92 Exponential stability 54, 69

Continuous-time system 6, 8 Extreme point 97
Control difference equation 21
Control differential equation 16 Final state 12
Control function 9, 16 Free system 49, 112
Control matrix 6 Frequency s-domain 43
Control-observation process 16 Fuel 71
Control sequence 12, 21, 87 Functional 71
Control theory 6,9, 43, 75, 106, 118 Functional analysis 94, 95, 97
Controllability 16, 17, 21 Fundamental matrix 8
—complete 19, 21
Controllability matrix 21, 37 Gain matrix 108

Convex combination 97 Gaussian random vector 117



154 Subject Index

Geometric multiplicity 57

Hamilton-Jacobi-Bellman equation 84, 85, 90,
92

Hamiltonian, 75, 78, 91, 99, 113, 116

Homogeneous equation 9

Hoélder inequality 15

Impulse response 64

Initial state 2

Initial time 16

Initial value problem 74

Input-output relation 1, 3, 4
Input-output (I-O) stability 45, 61, 65, 66, 69
Input-state relation (or equation) 2, 8, 16
Instability 45

Interior 73

Invariant subspace 39

Inverse Laplace transform 53, 64

Jordan canonical form 56, 57, 58, 68

Kalman canonical decomposition 37, 38, 108
Kalman filter 118
Krein-Milman Theorem 97

Lagrange problem 70, 71, 79
Landau notation 53

Laplace transform 43, 52, 64, 66
Linear algebra 18, 39, 45, 56
Linear (dynamic) system 6
Linear feedback .80, 112, 118
Linear operator 15

Linear regulator 75, 80, 92, 117
Linear servomechanism 76, 79, 80, 93
Linear span 14

Linear system theory 106, 118
Lyapunov, A. M. 49

Lyapunov function 111

Matrix Riccati equation 80, 92
Mayer problem 70, 79
Measurable function 94
Measure theory 94

Method of characteristics 90
Multi-input /multi-output 5
Minimal-order observer 108
Minimal realization 44, 110
Minimization 71, 83, 87, 88, 89, 94
Minimum-energy control 71
Minimum-fuel control 71, 86, 93
Minimum polynomial 45, 56, 58

Minimum principle (of Pontryagin)
98
Minimum-time control

81,90, 91,

71, 94, 98, 100, 104

Noise 117

Nonlinear system 110
Non-smooth optimization 85
Normal system 101
Normality 102

Observability 26, 30

-—at an initial time 26, 30
—complete 26, 30

—on an interval 26, 29
—total 26, 30

Observability matrix 28, 37
—total 30

Observation equation 17, 21
Observation (or output) matrix 6
Observer 107

Operator norm 60, 69

Optimal control function 72, 95
Optimal control theory 70, 106
Optimal terminal time .82, 87
Optimal trajectory (or state) 72
Optimality principle 81, 82
Optimization 70, 71

Ordinary differential equation 9, 90
Orthogonal complement 42
Orthogonality 39

Orthonormal basis 38

Outer normal (vector) 98, 104

Partial differential equation 90

Penalty functional 71

Picard (iteration process) 9, 10

Piecewise continuous function 9, 16,26, 37,43,
73,94, 116

Pole-zero cancellation 44

Pontryagin function 71

Pontryagin’s maximum principle
115, 116, 117

Pontryagin’s minimum principle 90,91, 93, 94,
99

Positive measure 94, 98

Product space 95

113, 114,

Rational function 67, 69
Reachable 106
Reachability 106
Relative interior 114



Riccati equation 86, 92, 93, 112, 118
Riemann sum 68

Sampling time unit 6

Schwarz’s inequality 52, 55, 56, 62, 68
Separation principle 117
Single-input/single-output 5

Signum function 63, 98, 101

Singular optimal control problem 101
Spectral radius theorem 60

Stability 45, 61, 67, 69

—in the sense of Lyapunov 45, 49, 50, 58, 110
Stabilization 112

Stable equilibrium in the sense of Lyapunov 50
State 1

State matrix 6

State-output relation 2
State-phase plane 100

State reconstruction 107
State sequence 21

State-space 2, 6

State-space description 4, 5, 13
State-space equation 2
State-space model S

State stability 45, 50, 56

State transition equation 8, 12
State transition matrix 9

State variable 1

State vector 1

Stochastic differential equation
Stochastic optimal control 117

117, 118

Subject Index 155

Switching time 100, 102
System 1
Target 70, 81, 87

Terminal time 24, 72

Time domain 43

Time-invariant linear system 36, 37
Time-invariant system $
Time-space 82, 87

Time-varying system 5

Transfer function 43, 44, 64, 66
Transfer matrix 6

Transition matrix 9, 12

Transition property 8, 12

Triangle inequality 10, 15, 55, 68
Two-point boundary value problem 76, 77, 80

Unitary matrix 38

Universal control function 20
Universal control sequence 23
Universal discrete time-interval 22
Unstable equilibrium 50

Value function 83
Variation 73
Variational method 70, 72, 93

w¥-compactness 95
Weierstrass theorem 11

z-transform 43, 66





